Brain Tumor Characterization Using Radiogenomics in Artificial Intelligence Framework

放射基因组学 无线电技术 人工智能 计算机科学 机器学习 精密医学 生物信息学 医学 病理 生物
作者
Biswajit Jena,Sanjay Saxena,Gopal Krishna Nayak,Antonella Balestrieri,Neha Gupta,Narinder N. Khanna,John R. Laird,Manudeep Kalra,Mostafa M. Fouda,Luca Saba,Jasjit S. Suri
出处
期刊:Cancers [MDPI AG]
卷期号:14 (16): 4052-4052 被引量:41
标识
DOI:10.3390/cancers14164052
摘要

Brain tumor characterization (BTC) is the process of knowing the underlying cause of brain tumors and their characteristics through various approaches such as tumor segmentation, classification, detection, and risk analysis. The substantial brain tumor characterization includes the identification of the molecular signature of various useful genomes whose alteration causes the brain tumor. The radiomics approach uses the radiological image for disease characterization by extracting quantitative radiomics features in the artificial intelligence (AI) environment. However, when considering a higher level of disease characteristics such as genetic information and mutation status, the combined study of “radiomics and genomics” has been considered under the umbrella of “radiogenomics”. Furthermore, AI in a radiogenomics’ environment offers benefits/advantages such as the finalized outcome of personalized treatment and individualized medicine. The proposed study summarizes the brain tumor’s characterization in the prospect of an emerging field of research, i.e., radiomics and radiogenomics in an AI environment, with the help of statistical observation and risk-of-bias (RoB) analysis. The PRISMA search approach was used to find 121 relevant studies for the proposed review using IEEE, Google Scholar, PubMed, MDPI, and Scopus. Our findings indicate that both radiomics and radiogenomics have been successfully applied aggressively to several oncology applications with numerous advantages. Furthermore, under the AI paradigm, both the conventional and deep radiomics features have made an impact on the favorable outcomes of the radiogenomics approach of BTC. Furthermore, risk-of-bias (RoB) analysis offers a better understanding of the architectures with stronger benefits of AI by providing the bias involved in them.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangsy完成签到 ,获得积分10
刚刚
舒心的山晴完成签到,获得积分10
刚刚
顾涵山发布了新的文献求助30
1秒前
薇薇发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
上帝的宠儿完成签到,获得积分10
1秒前
xxfsx应助科研通管家采纳,获得10
1秒前
xxfsx应助科研通管家采纳,获得10
1秒前
迅速冷霜发布了新的文献求助10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
沉默雅寒应助科研通管家采纳,获得100
2秒前
浮游应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得30
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
xxfsx应助科研通管家采纳,获得10
2秒前
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
zjhzjh关注了科研通微信公众号
2秒前
浮游应助科研通管家采纳,获得10
2秒前
舒服的蝴蝶完成签到,获得积分10
2秒前
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
wanci应助bai采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
科研小白发布了新的文献求助10
3秒前
佳jia完成签到,获得积分20
3秒前
苏鱼完成签到 ,获得积分0
3秒前
哈哈哈完成签到,获得积分10
3秒前
wxr完成签到 ,获得积分10
4秒前
Jasper应助小猪采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525810
求助须知:如何正确求助?哪些是违规求助? 4615949
关于积分的说明 14550994
捐赠科研通 4554057
什么是DOI,文献DOI怎么找? 2495680
邀请新用户注册赠送积分活动 1476168
关于科研通互助平台的介绍 1447839