已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning-assisted diagnosis of chronic atrophic gastritis in endoscopy

萎缩性胃炎 医学 内窥镜检查 胃肠病学 胃炎 内科学 病理 皮肤病科
作者
Yanting Shi,Ning Wei,Kunhong Wang,Jingjing Wu,Tao Tao,Na Li,Bing Lv
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:13 被引量:5
标识
DOI:10.3389/fonc.2023.1122247
摘要

Chronic atrophic gastritis (CAG) is a precancerous condition. It is not easy to detect CAG in endoscopy. Improving the detection rate of CAG under endoscopy is essential to reduce or interrupt the occurrence of gastric cancer. This study aimed to construct a deep learning (DL) model for CAG recognition based on endoscopic images to improve the CAG detection rate during endoscopy.We collected 10,961 endoscopic images and 118 video clips from 4,050 patients. For model training and testing, we divided them into two groups based on the pathological results: CAG and chronic non-atrophic gastritis (CNAG). We compared the performance of four state-of-the-art (SOTA) DL networks for CAG recognition and selected one of them for further improvement. The improved network was called GAM-EfficientNet. Finally, we compared GAM-EfficientNet with three endoscopists and analyzed the decision basis of the network in the form of heatmaps.After fine-tuning and transfer learning, the sensitivity, specificity, and accuracy of GAM-EfficientNet reached 93%, 94%, and 93.5% in the external test set and 96.23%, 89.23%, and 92.37% in the video test set, respectively, which were higher than those of the three endoscopists.The CAG recognition model based on deep learning has high sensitivity and accuracy, and its performance is higher than that of endoscopists.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助科研通管家采纳,获得20
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
Alex应助科研通管家采纳,获得30
3秒前
Orange应助科研通管家采纳,获得10
3秒前
Tiger-Cheng发布了新的文献求助10
3秒前
Alex应助科研通管家采纳,获得30
3秒前
若雨凌风应助科研通管家采纳,获得20
3秒前
研狗发布了新的文献求助10
4秒前
XudongHou发布了新的文献求助10
5秒前
笨笨芯发布了新的文献求助10
5秒前
研友_ngqjz8发布了新的文献求助10
5秒前
supper完成签到,获得积分10
5秒前
恋阙谙发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
Jasper应助笨笨芯采纳,获得10
10秒前
麦兜2001发布了新的文献求助10
11秒前
12秒前
CipherSage应助Tiger-Cheng采纳,获得10
12秒前
加加林发布了新的文献求助200
13秒前
14秒前
15秒前
科研通AI5应助ffd采纳,获得20
15秒前
17秒前
小吴完成签到,获得积分10
18秒前
劝儿发布了新的文献求助10
18秒前
18秒前
科研通AI5应助恋阙谙采纳,获得10
20秒前
aqb发布了新的文献求助10
20秒前
阿荣撒发布了新的文献求助10
22秒前
23秒前
务实的怜阳完成签到,获得积分10
26秒前
28秒前
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815339
求助须知:如何正确求助?哪些是违规求助? 3359155
关于积分的说明 10400562
捐赠科研通 3076791
什么是DOI,文献DOI怎么找? 1690017
邀请新用户注册赠送积分活动 813557
科研通“疑难数据库(出版商)”最低求助积分说明 767674