Transductive Learning With Prior Knowledge for Generalized Zero-Shot Action Recognition

计算机科学 人工智能 嵌入 分类器(UML) 语义鸿沟 模式识别(心理学) 机器学习 利用 集合(抽象数据类型) 图像(数学) 图像检索 计算机安全 程序设计语言
作者
Taiyi Su,Hanli Wang,Qiuping Qi,Lei Wang,Bin He
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (1): 260-273 被引量:9
标识
DOI:10.1109/tcsvt.2023.3284977
摘要

It is challenging to achieve generalized zero-shot action recognition. Different from the conventional zero-shot tasks which assume that the instances of the source classes are absent in the test set, the generalized zero-shot task studies the case that the test set contains both the source and the target classes. Due to the gap between visual feature and semantic embedding as well as the inherent bias of the learned classifier towards the source classes, the existing generalized zero-shot action recognition approaches are still far less effective than traditional zero-shot action recognition approaches. Facing these challenges, a novel transductive learning with prior knowledge (TLPK) model is proposed for generalized zero-shot action recognition. First, TLPK learns the prior knowledge which assists in bridging the gap between visual features and semantic embeddings, and preliminarily reduces the bias caused by the visual-semantic gap. Then, a transductive learning method that employs unlabeled target data is designed to overcome the bias problem in an effective manner. To achieve this, a target semantic-available approach and a target semantic-free approach are devised to utilize the target semantics in two different ways, where the target semantic-free approach exploits prior knowledge to produce well-performed semantic embeddings. By exploring the usage of the aforementioned prior-knowledge learning and transductive learning strategies, TLPK significantly bridges the visual-semantic gap and alleviates the bias between the source and the target classes. The experiments on the benchmark datasets of HMDB51 and UCF101 demonstrate the effectiveness of the proposed model compared to the state-of-the-art methods. The source code of this work can be found in https://mic.tongji.edu.cn
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小青蛙发布了新的文献求助30
2秒前
hwl26完成签到,获得积分10
2秒前
zz发布了新的文献求助10
3秒前
3秒前
酷波er应助在雨中不说雨采纳,获得10
4秒前
乐观的小笼包完成签到,获得积分10
4秒前
IGLEG发布了新的文献求助10
4秒前
5秒前
11发布了新的文献求助10
5秒前
Dandy完成签到,获得积分10
5秒前
5秒前
liu发布了新的文献求助10
6秒前
汉堡包应助jiqixi采纳,获得10
6秒前
6秒前
科研通AI5应助趙途嘵生采纳,获得10
6秒前
HYCT发布了新的文献求助10
7秒前
8秒前
8秒前
小柚完成签到,获得积分10
8秒前
9秒前
庸人自扰发布了新的文献求助10
10秒前
dahuang发布了新的文献求助10
10秒前
可可完成签到,获得积分10
10秒前
10秒前
yoloooooo发布了新的文献求助10
11秒前
顾矜应助虚心天思采纳,获得10
11秒前
EdRefrain完成签到,获得积分10
11秒前
xiyuexue完成签到,获得积分10
11秒前
semigreen发布了新的文献求助10
12秒前
天天开心完成签到,获得积分10
12秒前
123发布了新的文献求助10
12秒前
13秒前
13秒前
QUEEN发布了新的文献求助10
13秒前
慕青应助优雅的白山采纳,获得10
13秒前
13秒前
14秒前
坚定小翠完成签到,获得积分10
14秒前
14秒前
快乐水完成签到,获得积分10
15秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Single Element Semiconductors: Properties and Devices 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828574
求助须知:如何正确求助?哪些是违规求助? 3371011
关于积分的说明 10465801
捐赠科研通 3090912
什么是DOI,文献DOI怎么找? 1700600
邀请新用户注册赠送积分活动 817934
科研通“疑难数据库(出版商)”最低求助积分说明 770588