Rethinking Inconsistent Context and Imbalanced Regression in Depression Severity Prediction

背景(考古学) 萧条(经济学) 回归 心理学 回归分析 人工智能 计算机科学 机器学习 认知心理学 计量经济学 数学 地理 心理治疗师 经济 考古 宏观经济学
作者
Guanhe Huang,Jing Li,Heli Lu,Ming Guo,Shengyong Chen
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:15 (4): 2154-2168 被引量:1
标识
DOI:10.1109/taffc.2024.3405584
摘要

As one of the world's most prevalent mental illnesses, depression is not easy to detect since it affects different people in different ways. Recently, linguistic features extracted from transcribed texts have been widely explored in depression detection because they contain a variety of cues about psychological activities. However, the detection performance is limited due to the following two reasons: 1) the dialogue structure is ignored, which causes the Inconsistent Context problem; and 2) Imbalanced Regression occurs due to the long-tailed distribution of depression datasets. To this end, in this paper we investigate the relationship between the local topic and global context in interview transcripts, and bridge the gap between depression symptoms and depression severity. In particular, we propose a model called Conditional Variational Topic-enriched Auto-Encoder (CVTAE), which can capture the spatial features from local topics via variational inference, and the temporal features from the global context with attention mechanism. Besides, we apply the re-weighting strategies to assigning weights to the depression labels with different values. Extensive experiments on the DAIC-WOZ dataset in English and a self-constructed database NCUDID in Chinese demonstrate the effectiveness and robustness of CVTAE, while the comprehensive ablation study and case study show its interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中锅人发布了新的文献求助10
刚刚
刚刚
皮皮发布了新的文献求助20
刚刚
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
星辰大海应助YBR采纳,获得10
4秒前
4秒前
炽岈完成签到,获得积分10
4秒前
5秒前
freedom发布了新的文献求助10
5秒前
5秒前
Asteria完成签到,获得积分10
5秒前
5秒前
JamesPei应助wyh采纳,获得10
6秒前
owen发布了新的文献求助10
6秒前
鹊谣发布了新的文献求助10
6秒前
7秒前
Owen应助koutianle采纳,获得10
8秒前
tramp应助开心市民小刘采纳,获得10
8秒前
YangYue完成签到,获得积分10
8秒前
专注的草丛完成签到,获得积分10
8秒前
Yvette2024发布了新的文献求助10
9秒前
上官若男应助听风采纳,获得10
9秒前
9秒前
bixiao应助原野小年采纳,获得10
10秒前
10秒前
10秒前
小红要发文章哦完成签到,获得积分10
10秒前
10秒前
中锅人完成签到,获得积分10
11秒前
乐乐应助祁白曼采纳,获得10
11秒前
彭于晏应助freedom采纳,获得10
12秒前
jenningseastera应助Nothing采纳,获得30
12秒前
liverbool完成签到,获得积分10
12秒前
13秒前
coolkid应助eliseo采纳,获得20
13秒前
······发布了新的文献求助10
13秒前
Charon完成签到 ,获得积分20
13秒前
14秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3888094
求助须知:如何正确求助?哪些是违规求助? 3430301
关于积分的说明 10769619
捐赠科研通 3155232
什么是DOI,文献DOI怎么找? 1742390
邀请新用户注册赠送积分活动 841069
科研通“疑难数据库(出版商)”最低求助积分说明 785823