Dynamic Micro-Expression Recognition Using Knowledge Distillation

表达式(计算机科学) 面部动作编码系统 计算机科学 瓶颈 人工智能 人工神经网络 面部表情 面部表情识别 机器学习 语音识别 模式识别(心理学) 面部识别系统 程序设计语言 嵌入式系统
作者
Bo Sun,Siming Cao,Dongliang Li,Jun He,Lejun Yu
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:13 (2): 1037-1043 被引量:75
标识
DOI:10.1109/taffc.2020.2986962
摘要

Micro-expression is a spontaneous expression that occurs when a person tries to mask his or her inner emotion, and can neither be forged nor suppressed. It is a kind of short-duration, low-intensity, and usually local-motion facial expression. However, owing to these characteristics of micro-expression, it is difficult to obtain micro-expression data, which is the bottleneck of applying deep learning methods to micro-expression recognition. In addition, micro-expression is still a type of expression, and it can also be encoded by the facial action coding system. Therefore, there is a certain correlation between action unit recognition and micro-expression recognition. Addressing those, we propose a novel knowledge transfer technique distills and transfers knowledge from action unit for micro-expression recognition, where knowledge from a pre-trained deep teacher neural network is distilled and transferred to a shallow student neural network. Specifically, a teacher-student correlative framework is designed with a novel objective function. And features extracted from the teacher network is used as prior knowledge to guide the student part to efficiently learning from the target micro-expression dataset. Experiments are conducted on four available published micro-expression datasets (SMIC2, CASME, CASME II, and SAMM). The experimental results show that our model outperforms the state-of-the-art systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wonder123发布了新的文献求助10
5秒前
6秒前
6秒前
道森完成签到,获得积分10
7秒前
nannannan发布了新的文献求助10
8秒前
10秒前
zyl完成签到 ,获得积分10
10秒前
11秒前
道森发布了新的文献求助10
11秒前
12秒前
LaTeXer给老迟到的可乐的求助进行了留言
12秒前
共享精神应助笑笑采纳,获得10
13秒前
66发布了新的文献求助10
14秒前
14秒前
荔枝完成签到,获得积分10
15秒前
可乐啊啊啊完成签到,获得积分10
17秒前
荔枝发布了新的文献求助10
18秒前
虚幻凡柔完成签到,获得积分10
18秒前
18秒前
万骛发布了新的文献求助10
20秒前
Larrin发布了新的文献求助10
21秒前
凶狠的盼柳完成签到,获得积分10
22秒前
2019kyxb发布了新的文献求助10
23秒前
梦巷完成签到 ,获得积分10
24秒前
婉儿发布了新的文献求助10
25秒前
Larrin完成签到,获得积分10
27秒前
Akim应助柚子烤饼干采纳,获得10
29秒前
Zz完成签到 ,获得积分10
29秒前
2019kyxb完成签到,获得积分10
30秒前
灰木完成签到 ,获得积分20
31秒前
木木完成签到 ,获得积分10
31秒前
善学以致用应助likunlin采纳,获得10
32秒前
32秒前
冷艳的火龙果完成签到,获得积分10
33秒前
科研通AI5应助卓垚采纳,获得10
34秒前
34秒前
34秒前
懵懂的采梦应助vizzz采纳,获得10
35秒前
南山有只大肥羊完成签到,获得积分10
35秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
成人寻常型银屑病医患共决策-海峡两岸及港澳地区专家共识 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829456
求助须知:如何正确求助?哪些是违规求助? 3372039
关于积分的说明 10470499
捐赠科研通 3091619
什么是DOI,文献DOI怎么找? 1701274
邀请新用户注册赠送积分活动 818342
科研通“疑难数据库(出版商)”最低求助积分说明 770835