Hybrid Robotic Grasping With a Soft Multimodal Gripper and a Deep Multistage Learning Scheme

抓住 方案(数学) 人工智能 计算机科学 对象(语法) 夹持器 强化学习 任务(项目管理) 控制工程 计算机视觉 工程类 机械工程 数学 数学分析 程序设计语言 系统工程
作者
Fukang Liu,Fuchun Sun,Bin Fang,Xiang Li,Songyu Sun,Huaping Liu
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (3): 2379-2399 被引量:41
标识
DOI:10.1109/tro.2023.3238910
摘要

Grasping has long been considered an important and practical task in robotic manipulation. Yet achieving robust and efficient grasps of diverse objects is challenging, since it involves gripper design, perception, control and learning, etc. Recent learning-based approaches have shown excellent performance in grasping a variety of novel objects. However, these methods either are typically limited to one single grasping mode, or else more end effectors are needed to grasp various objects. In addition, gripper design and learning methods are commonly developed separately, which may not adequately explore the ability of a multimodal gripper. In this paper, we present a deep reinforcement learning (DRL) framework to achieve multistage hybrid robotic grasping with a new soft multimodal gripper. A soft gripper with three grasping modes (i.e., enveloping, sucking, and enveloping_then_sucking) can both deal with objects of different shapes and grasp more than one object simultaneously. We propose a novel hybrid grasping method integrated with the multimodal gripper to optimize the number of grasping actions. We evaluate the DRL framework under different scenarios (i.e., with different ratios of objects of two grasp types). The proposed algorithm is shown to reduce the number of grasping actions (i.e., enlarge the grasping efficiency, with maximum values of 161% in simulations and 154% in real-world experiments) compared to single grasping modes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助xxxx采纳,获得10
1秒前
iiiau完成签到,获得积分10
2秒前
2秒前
小蘑菇应助Hydro采纳,获得10
2秒前
机灵的彤完成签到 ,获得积分10
3秒前
Cherry发布了新的文献求助10
3秒前
搜集达人应助美丽的梦槐采纳,获得10
3秒前
3秒前
潜山耕之完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
CipherSage应助慕知采纳,获得10
5秒前
李健的粉丝团团长应助cco采纳,获得10
6秒前
科研通AI2S应助打工人肉肉采纳,获得10
7秒前
7秒前
7秒前
土拨鼠发布了新的文献求助10
7秒前
H0oZz发布了新的文献求助10
7秒前
隐形的书瑶完成签到 ,获得积分10
8秒前
隐形的芸遥完成签到,获得积分10
8秒前
完美的发卡完成签到 ,获得积分10
8秒前
8秒前
直击灵魂关注了科研通微信公众号
9秒前
10秒前
lzj发布了新的文献求助10
10秒前
xiaoyan关注了科研通微信公众号
11秒前
11秒前
科目三应助布曲采纳,获得10
12秒前
一只龟龟发布了新的文献求助10
12秒前
13秒前
xigua应助动听的蛟凤采纳,获得10
13秒前
13秒前
They_say发布了新的文献求助10
14秒前
lzj完成签到,获得积分10
15秒前
锦哥发布了新的文献求助10
15秒前
WW发布了新的文献求助10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
科研助手6应助夏天采纳,获得10
16秒前
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790524
求助须知:如何正确求助?哪些是违规求助? 3335294
关于积分的说明 10274188
捐赠科研通 3051766
什么是DOI,文献DOI怎么找? 1674822
邀请新用户注册赠送积分活动 802870
科研通“疑难数据库(出版商)”最低求助积分说明 760956