Self-Promoted Supervision for Few-Shot Transformer

安全性令牌 计算机科学 人工智能 变压器 提取器 弹丸 机器学习 工程类 计算机安全 工艺工程 电气工程 电压 有机化学 化学
出处
期刊:Singapore Management University - Singapore Management University Institutional Knowledge (InK)
标识
DOI:10.48550/arxiv.2203.07057
摘要

The few-shot learning ability of vision transformers (ViTs) is rarely investigated though heavily desired. In this work, we empirically find that with the same few-shot learning frameworks, \eg~Meta-Baseline, replacing the widely used CNN feature extractor with a ViT model often severely impairs few-shot classification performance. Moreover, our empirical study shows that in the absence of inductive bias, ViTs often learn the low-qualified token dependencies under few-shot learning regime where only a few labeled training data are available, which largely contributes to the above performance degradation. To alleviate this issue, for the first time, we propose a simple yet effective few-shot training framework for ViTs, namely Self-promoted sUpervisioN (SUN). Specifically, besides the conventional global supervision for global semantic learning SUN further pretrains the ViT on the few-shot learning dataset and then uses it to generate individual location-specific supervision for guiding each patch token. This location-specific supervision tells the ViT which patch tokens are similar or dissimilar and thus accelerates token dependency learning. Moreover, it models the local semantics in each patch token to improve the object grounding and recognition capability which helps learn generalizable patterns. To improve the quality of location-specific supervision, we further propose two techniques:~1) background patch filtration to filtrate background patches out and assign them into an extra background class; and 2) spatial-consistent augmentation to introduce sufficient diversity for data augmentation while keeping the accuracy of the generated local supervisions. Experimental results show that SUN using ViTs significantly surpasses other few-shot learning frameworks with ViTs and is the first one that achieves higher performance than those CNN state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
snnn完成签到,获得积分10
1秒前
今后应助dadadada采纳,获得10
1秒前
大个应助张凯茜采纳,获得10
2秒前
luoshikun完成签到,获得积分10
2秒前
阳光发布了新的文献求助10
2秒前
3秒前
3秒前
成就的安阳完成签到,获得积分10
3秒前
3秒前
3秒前
无私的黄豆完成签到 ,获得积分10
3秒前
shilly关注了科研通微信公众号
4秒前
张天宝真的爱科研完成签到,获得积分10
4秒前
4秒前
施耐德发布了新的文献求助10
4秒前
橘子发布了新的文献求助60
5秒前
小蘑菇应助星辉采纳,获得10
5秒前
5秒前
木辛完成签到,获得积分10
5秒前
仁爱的寻凝完成签到,获得积分10
5秒前
桐桐应助11采纳,获得10
6秒前
6秒前
小药童应助哈哈哈采纳,获得10
7秒前
kyo发布了新的文献求助10
7秒前
z1005发布了新的文献求助10
7秒前
7秒前
荼白完成签到 ,获得积分10
7秒前
木易心完成签到,获得积分10
7秒前
yy完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
椰椰冰柠茶完成签到,获得积分10
8秒前
9秒前
张凯茜完成签到,获得积分20
9秒前
李_完成签到,获得积分10
9秒前
SJD完成签到,获得积分0
9秒前
9秒前
yao发布了新的文献求助10
10秒前
完美世界应助犹豫的君浩采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5489302
求助须知:如何正确求助?哪些是违规求助? 4588013
关于积分的说明 14417128
捐赠科研通 4519737
什么是DOI,文献DOI怎么找? 2476385
邀请新用户注册赠送积分活动 1461857
关于科研通互助平台的介绍 1435004