A Semantic Segmentation Method for Remote Sensing Images Based on the Swin Transformer Fusion Gabor Filter

计算机视觉 人工智能 计算机科学 Gabor滤波器 分割 融合 变压器 图像分割 滤波器(信号处理) 模式识别(心理学) 特征提取 工程类 语言学 电气工程 哲学 电压
作者
Dongdong Feng,Zhihua Zhang,Kun Yan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 77432-77451 被引量:18
标识
DOI:10.1109/access.2022.3193248
摘要

Semantic segmentation of remote sensing images is increasingly important in urban planning, autonomous driving, disaster monitoring, and land cover classification. With the development of high-resolution remote sensing satellite technology, multilevel, large-scale, and high-precision segmentation has become the focus of current research. High-resolution remote sensing images have high intraclass diversity and low interclass separability, which pose challenges to the precision of the detailed representation of multiscale information. In this paper, a semantic segmentation method for remote sensing images based on Swin Transformer fusion with a Gabor filter is proposed. First, a Swin Transformer is used as the backbone network to extract image information at different levels. Then, the texture and edge features of the input image are extracted with a Gabor filter, and the multilevel features are merged by introducing a feature aggregation module (FAM) and an attentional embedding module (AEM). Finally, the segmentation result is optimized with the fully connected conditional random field (FC-CRF). Our proposed method, called Swin-S-GF, its mean Intersection over Union (mIoU) scored 80.14%, 66.50%, and 70.61% on the large-scale classification set, the fine land-cover classification set, and the "AI + Remote Sensing imaging dataset" (AI+RS dataset), respectively. Compared with DeepLabV3, mIoU increased by 0.67%, 3.43%, and 3.80%, respectively. Therefore, we believe that this model provides a good tool for the semantic segmentation of high-precision remote sensing images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
8R60d8应助科研通管家采纳,获得10
刚刚
Yuki应助科研通管家采纳,获得10
1秒前
1秒前
Yuki应助科研通管家采纳,获得10
1秒前
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
8R60d8应助科研通管家采纳,获得10
1秒前
Yuki应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
sevenhill应助科研通管家采纳,获得10
2秒前
寻道图强应助科研通管家采纳,获得30
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得30
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
2秒前
Sc1ivez发布了新的文献求助10
2秒前
Sc1ivez发布了新的文献求助10
2秒前
燕烟发布了新的文献求助10
2秒前
暖冬22完成签到,获得积分10
3秒前
111完成签到 ,获得积分10
4秒前
4秒前
xmjxmj217发布了新的文献求助10
5秒前
思源应助研友_xLOMQZ采纳,获得10
5秒前
英姑应助lyq123456采纳,获得30
5秒前
郭gyc123456完成签到,获得积分10
5秒前
5秒前
斯文败类应助sunshine采纳,获得10
6秒前
一只小野完成签到,获得积分10
6秒前
7秒前
7秒前
电介质物理完成签到,获得积分20
10秒前
浮游应助像鱼采纳,获得10
10秒前
迷人的长颈鹿应助vv采纳,获得10
10秒前
Momomo应助vv采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484090
求助须知:如何正确求助?哪些是违规求助? 4584405
关于积分的说明 14397691
捐赠科研通 4514382
什么是DOI,文献DOI怎么找? 2473969
邀请新用户注册赠送积分活动 1459937
关于科研通互助平台的介绍 1433307