Predicting minimum miscible pressure in pure CO2 flooding using machine learning: Method comparison and sensitivity analysis

Python(编程语言) 计算机科学 可靠性(半导体) 提高采收率 均方误差 机器学习 决定系数 人工智能 数据挖掘 数学 石油工程 统计 热力学 工程类 功率(物理) 物理 操作系统
作者
Harith F. Al-Khafaji,Qingbang Meng,Wakeel Hussain,Rudha Khudhair Mohammed,Fayez Harash,Salah Alshareef AlFakey
出处
期刊:Fuel [Elsevier]
卷期号:354: 129263-129263 被引量:13
标识
DOI:10.1016/j.fuel.2023.129263
摘要

CO2 injection for enhanced oil recovery (EOR) is widely recognized as an efficient technique for carbon capture, utilization, and storage (CCUS). This operation has a significant impact on various technical parameters, emphasizing the need to carefully consider and select the optimum approach. Among these factors, the minimum miscible pressure (MMP) plays a crucial role in determining the effectiveness and performance of CO2 injection. Therefore, this study aims to assess the reliability of machine learning (ML) in predicting the MMP of pure CO2 and examine the influence of different independent parameters. To achieve this, five ML methods were employed to predict the pure CO2 MMP, and the results were compared to statistical evaluations based on empirical correlations. In addition, three types of data with different functional input parameters were used in this research. Two types of data were obtained from existing literature, while the third category was collected from the thesis and PVT reports for specific Iraqi oil fields. The ML models were constructed by splitting the dataset into 20% for testing and 80% for training using Python programming. The significance of this study lies in its ability to identify the most efficient approach for forecasting MMP. The results of this work revealed that the K-nearest neighbors (KNN) model indicated the best statistical evaluation among the ML learning algorithms for two types of data (2) and (3) in predicting the MMP for pure CO2 flooding. This was evidenced by the lowest mean square error and the highest coefficient of determination. Additionally, the findings indicated that the support vector regression (SVR) method is an effective technique for smaller datasets. Moreover, the sensitivity analysis and assessment of the relative impacts of various input parameters revealed that the prediction of MMP is most sensitive to the composition of the injected gas and temperature, accounting for 46% and 28.5% of the variation, respectively. Finally, the presented ML models indicate exceptional accuracy, speed, adaptability in handling diverse conditions, and cost-effectiveness when compared to conventional approaches. These results verify the ability of ML models to provide high-quality predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助小文子采纳,获得10
刚刚
大气的梨愁完成签到,获得积分10
刚刚
acd发布了新的文献求助10
1秒前
英俊的铭应助之鱼之乐采纳,获得10
2秒前
小马甲应助小海采纳,获得10
2秒前
samon发布了新的文献求助10
2秒前
2秒前
汉堡包应助carbonhan采纳,获得10
3秒前
3秒前
哈基米德应助22233采纳,获得20
3秒前
哲999发布了新的文献求助10
3秒前
小波发布了新的文献求助10
3秒前
李健应助飘逸山兰采纳,获得10
3秒前
xiaoxiao1992发布了新的文献求助10
4秒前
英姑应助白桃铁观音采纳,获得10
4秒前
4秒前
4秒前
无花果应助鱼糕采纳,获得10
4秒前
小破仁666完成签到,获得积分10
5秒前
舒适念真发布了新的文献求助10
5秒前
5秒前
爆米花应助坚强的橘子采纳,获得10
5秒前
Julius发布了新的文献求助10
5秒前
6秒前
7秒前
jun发布了新的文献求助20
7秒前
7秒前
7秒前
xxfsx应助遇见采纳,获得10
7秒前
是柯基不是科技完成签到,获得积分10
8秒前
8秒前
魁梧的烧鹅完成签到,获得积分10
9秒前
CipherSage应助下雨天的树采纳,获得10
9秒前
howky发布了新的文献求助10
9秒前
changeyuu发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
英姑应助研友_nPPz9n采纳,获得10
10秒前
爆米花应助不爱喝纯牛奶采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512879
求助须知:如何正确求助?哪些是违规求助? 4607280
关于积分的说明 14504084
捐赠科研通 4542710
什么是DOI,文献DOI怎么找? 2489172
邀请新用户注册赠送积分活动 1471230
关于科研通互助平台的介绍 1443251