Capturing the Individual Deviations From Normative Models of Brain Structure for Depression Diagnosis and Treatment

规范性 心理学 萧条(经济学) 决策规范模型 灰质 结构方程建模 人类连接体项目 临床心理学 医学 神经科学 磁共振成像 白质 计算机科学 机器学习 放射科 哲学 认识论 经济 宏观经济学 功能连接
作者
Junneng Shao,Jiaolong Qin,Huan Wang,Yurong Sun,Wei Zhang,Xinyi Wang,Ting Wang,Xue Li,Zhijian Yao,Qing Lü
出处
期刊:Biological Psychiatry [Elsevier BV]
卷期号:95 (5): 403-413 被引量:11
标识
DOI:10.1016/j.biopsych.2023.08.005
摘要

Abstract

Background

The high heterogeneity of depression prevents us from obtaining reproducible and definite anatomical maps of brain structural changes associated with the disorder, which thereafter limits the individualized diagnosis and treatment of patients. In this study, we investigated the clinical issues related to depression according to individual deviations from normative ranges of grey matter volume (GMV).

Methods

We enrolled 1,092 participants totally, including 187 depression patients and 905 healthy controls (HCs). Structural MRI of HCs from the Human Connectome Project (n=510) and REST-meta-MDD Project (n=229) were used to establish normative model across the lifespan in 18-65 years for each brain region. Deviations from normative range for 187 patients and 166 HCs, recruited from two local hospitals, were captured as normative probability maps (NPMs), which was used to identify the disease risk and treatment-related latent factors.

Results

Unlike case-control results, our normative modeling approach revealed highly individualized patterns of anatomic abnormalities in depressed patients (less than 11% extreme deviation overlapping for any regions). Based on our classification framework, models trained with individual NPMs (AUC range, 0.7146-0.7836) showed better performance than those trained with original GMV (AUC range, 0.6800-0.7036), which was verified in an independent external test set. Furthermore, different latent brain structural factors in relation to antidepressant treatment were revealed by a Bayesian model based on NPMs, suggesting distinct treatment response and inclination.

Conclusion

Capturing the personalization deviations from normative range could help understand the heterogeneous neurobiology of depression, thus contribute to guide diagnosis and treatment for depression clinically.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
xmuchem发布了新的文献求助10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得30
3秒前
思芋奶糕发布了新的文献求助10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
3秒前
烟花应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得30
3秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
唐泽雪穗发布了新的文献求助10
4秒前
贺炎发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
丽优发布了新的文献求助10
7秒前
不配.应助清秀人杰采纳,获得200
7秒前
赵小漂亮发布了新的文献求助10
8秒前
YYYYYYYYY完成签到,获得积分10
8秒前
核桃发布了新的文献求助10
10秒前
z69823发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979386
求助须知:如何正确求助?哪些是违规求助? 4232080
关于积分的说明 13182198
捐赠科研通 4023012
什么是DOI,文献DOI怎么找? 2201141
邀请新用户注册赠送积分活动 1213588
关于科研通互助平台的介绍 1129781