DPL-SLAM: Enhancing Dynamic Point-Line SLAM Through Dense Semantic Methods

计算机科学 同时定位和映射 点(几何) 人工智能 计算机视觉 直线(几何图形) 机器人 移动机器人 数学 几何学
作者
Zhihao Lin,Qi Zhang,Zhen Tian,Peizhuo Yu,Jianglin Lan
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (9): 14596-14607 被引量:35
标识
DOI:10.1109/jsen.2024.3373892
摘要

The traditional visual simultaneous localization and mapping (SLAM) systems rely on the static-world assumption and cannot handle dynamic objects. This article presents a novel SLAM system, Semantic Point and Line Features SLAM (DPL-SLAM), that can handle dynamic environments and can be used for real-time operation. To handle dynamic objects, we apply object detection to identify 80 categories within the scene and implement unique handling of features both within and outside the detected bounding boxes using Lucas–Kanade (LK) optical flow and epipolar constraint. Within bounding boxes, we propose an efficient local elimination algorithm to address features that violate the epipolar constraint. We designate nearby and intra-box regions that deviate from the constraint as potential dynamic areas, and conditionally eliminate features within these areas to varying extents, thus minimizing incorrect elimination of stable data associations. Outside the bounding boxes, non-compliant features are regarded as outliers and directly eliminated, making the system robust to unknown objects. We have evaluated DPL-SLAM on the TUM RGB-D and KITTI STEREO datasets and compared it with state-of-the-art SLAM systems. The results show that DPL-SLAM outperforms most SLAM systems in various dynamic scenarios and exhibits excellent robustness and real-time performance, thus effectively handling dynamic noise interference under indoor RGB-D and outdoor stereo modes. Finally, we conduct experiments in a real-world environment to verify the algorithm’s effectiveness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiying发布了新的文献求助10
刚刚
小杭76应助余柳采纳,获得10
刚刚
bkagyin应助欧维采纳,获得10
1秒前
劳伦斯完成签到 ,获得积分10
1秒前
乐乐应助kouyu采纳,获得10
1秒前
思源应助几人得真鹿采纳,获得10
1秒前
1秒前
haha完成签到,获得积分10
2秒前
Jack发布了新的文献求助10
2秒前
2秒前
深情安青应助Vxfhfdhkcds采纳,获得10
2秒前
2秒前
忧郁小蘑菇完成签到,获得积分10
2秒前
爽歪歪4312应助1134695021采纳,获得10
3秒前
吃不胖的阿吴完成签到,获得积分10
3秒前
陶瓷人完成签到,获得积分10
4秒前
4秒前
4秒前
动听慕卉发布了新的文献求助10
4秒前
漂亮采波完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
www完成签到,获得积分10
7秒前
7秒前
雄哎哟发布了新的文献求助10
8秒前
King完成签到,获得积分10
8秒前
葵小葵完成签到,获得积分10
9秒前
9秒前
优美靖柏完成签到,获得积分10
9秒前
9秒前
123完成签到,获得积分20
9秒前
10秒前
浮游应助WuYiHHH采纳,获得10
11秒前
11秒前
张糊糊发布了新的文献求助10
11秒前
子车茗应助www采纳,获得30
11秒前
狗宅完成签到,获得积分10
11秒前
小陈爱吃韩堡堡完成签到,获得积分10
12秒前
kangkang完成签到,获得积分20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286206
求助须知:如何正确求助?哪些是违规求助? 4439117
关于积分的说明 13820017
捐赠科研通 4320822
什么是DOI,文献DOI怎么找? 2371606
邀请新用户注册赠送积分活动 1367203
关于科研通互助平台的介绍 1330636