Incomplete Multi-View Learning Under Label Shift

人工智能 计算机科学 分类器(UML) 机器学习 模式识别(心理学)
作者
Ruidong Fan,Xiao Ouyang,Tingjin Luo,Dewen Hu,Chenping Hou
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 3702-3716 被引量:7
标识
DOI:10.1109/tip.2023.3290527
摘要

In image processing, images are usually composed of partial views due to the uncertainty of collection and how to efficiently process these images, which is called incomplete multi-view learning, has attracted widespread attention. The incompleteness and diversity of multi-view data enlarges the difficulty of annotation, resulting in the divergence of label distribution between the training and testing data, named as label shift. However, existing incomplete multi-view methods generally assume that the label distribution is consistent and rarely consider the label shift scenario. To address this new but important challenge, we propose a novel framework termed as Incomplete Multi-view Learning under Label Shift (IMLLS). In this framework, we first give the formal definitions of IMLLS and the bidirectional complete representation which describes the intrinsic and common structure. Then, a multilayer perceptron which combines the reconstruction and classification loss is employed to learn the latent representation, whose existence, consistency and universality are proved with the theoretical satisfaction of label shift assumption. After that, to align the label distribution, the learned representation and trained source classifier are used to estimate the importance weight by designing a new estimation scheme which balances the error generated by finite samples in theory. Finally, the trained classifier reweighted by the estimated weight is fine-tuned to reduce the gap between the source and target representations. Extensive experimental results validate the effectiveness of our algorithm over existing state-of-the-arts methods in various aspects, together with its effectiveness in discriminating schizophrenic patients from healthy controls.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Beni完成签到,获得积分10
1秒前
刘芬发布了新的文献求助10
1秒前
anitamui发布了新的文献求助10
4秒前
小城旧事完成签到,获得积分10
4秒前
zhuiyu发布了新的文献求助10
4秒前
愉快的夏菡完成签到,获得积分10
4秒前
sci完成签到,获得积分10
4秒前
ableyy发布了新的文献求助10
4秒前
高兴曼寒发布了新的文献求助10
5秒前
5秒前
5秒前
vax发布了新的文献求助10
5秒前
杨旭完成签到,获得积分10
5秒前
从容前行完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
你好完成签到,获得积分10
7秒前
7秒前
jou发布了新的文献求助10
8秒前
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
Lucas应助LZK采纳,获得10
8秒前
满意的冰凡完成签到,获得积分20
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
上官若男应助科研通管家采纳,获得10
9秒前
嘻嘻哈哈应助科研通管家采纳,获得10
9秒前
小蘑菇应助liub13采纳,获得10
9秒前
9秒前
9秒前
彭于彦祖应助科研通管家采纳,获得80
9秒前
嘻嘻哈哈应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
彭于彦祖应助科研通管家采纳,获得150
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316908
求助须知:如何正确求助?哪些是违规求助? 4459356
关于积分的说明 13874913
捐赠科研通 4349318
什么是DOI,文献DOI怎么找? 2388758
邀请新用户注册赠送积分活动 1382917
关于科研通互助平台的介绍 1352277