Deep learning assisted high throughput screening of ionic liquid electrolytes for NRR and CO2RR

离子液体 电解质 溶解度 电导率 氧化还原 吞吐量 粘度 材料科学 化学 计算机科学 电极 无机化学 有机化学 催化作用 物理化学 复合材料 电信 无线
作者
Yingying Song,Yandong Guo,Junwu Chen,Menglei Yuan,Kun Dong
出处
期刊:Journal of environmental chemical engineering [Elsevier BV]
卷期号:11 (5): 110556-110556 被引量:12
标识
DOI:10.1016/j.jece.2023.110556
摘要

Nonaqueous ionic liquids (ILs) with high solubility of both N2 and CO2 have a greater potential to be used as electrolytes for nitrogen reduction reaction (NRR) and electrocatalytic CO2 reduction reaction (CO2RR) due to the reduced effects of hydrogen evolution reactions (HER) and the high conductivity as well as the low viscosity. However, conventional experimental methods for screening ILs electrolytes are time consuming and labor intensive. In this work, a deep learning-assisted ILs screening approach was investigated to find the ILs electrolytes in practical applications. About 40,000 experimental data were collected for six ILs properties including viscosity, conductivity, melting point, density, N2 solubility and CO2 solubility. Graph neural network (GNN) was used to predict the properties of ILs and exhibited superior performance compared to traditional machine learning models. In addition, the transfer learning (TL) approach was employed to enhance the model prediction on a small dataset. To achieve high-throughput screening, a virtual database was constructed with 2 million ILs structures. Taking the properties of [P6,6,6,14][eFAP], the IL with higher Faradaic conversion efficiency, as the input thresholds, we performed high throughput screening of the virtual dataset, obtained 141 ILs based on the Synthetic Complexity Score (SCScore), in which [B(CN)4]- ILs and [ClO4]- ILs accounted for 29.3% and 15.7%, respectively, and finally identified 8 ILs superior to [P6,6,6,14][eFAP] as ideal electrolytes materials for both NRR and CO2RR that had been reported to be synthesizable. This data-driven model can streamline electrolytes selection and design, accelerating the development of IL electrolytes for electrochemical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mrsummer完成签到,获得积分10
刚刚
韩嬉乐完成签到 ,获得积分10
1秒前
北赊完成签到,获得积分10
1秒前
英姑应助小猴儿采纳,获得10
2秒前
kk发布了新的文献求助20
2秒前
Young完成签到,获得积分10
2秒前
东方不败完成签到 ,获得积分10
2秒前
健壮的凝冬完成签到 ,获得积分10
2秒前
maz123456完成签到,获得积分10
3秒前
顺利白安完成签到,获得积分10
3秒前
3秒前
舒舒发布了新的文献求助10
4秒前
阳光的友易完成签到,获得积分10
4秒前
田様应助xf采纳,获得30
4秒前
酷波er应助Mrsummer采纳,获得10
4秒前
热心冷亦完成签到,获得积分10
4秒前
断数循环应助淡定雅山采纳,获得10
4秒前
Bingo完成签到,获得积分10
4秒前
蜡笔小可完成签到,获得积分10
4秒前
科研小猫发布了新的文献求助10
5秒前
活泼洙完成签到,获得积分10
5秒前
maoni应助浪而而采纳,获得10
5秒前
8秒前
8秒前
AZE完成签到,获得积分10
8秒前
meww发布了新的文献求助10
9秒前
ableyy完成签到 ,获得积分10
9秒前
10秒前
11秒前
HC完成签到,获得积分10
11秒前
11秒前
11秒前
打打应助zhanghenhao采纳,获得10
12秒前
传奇3应助小猴儿采纳,获得10
12秒前
桐桐应助少7一点8采纳,获得10
13秒前
13秒前
14秒前
111完成签到,获得积分10
14秒前
雨田完成签到,获得积分10
14秒前
小躲躲啊完成签到,获得积分20
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4162910
求助须知:如何正确求助?哪些是违规求助? 3698472
关于积分的说明 11676447
捐赠科研通 3388603
什么是DOI,文献DOI怎么找? 1858225
邀请新用户注册赠送积分活动 918898
科研通“疑难数据库(出版商)”最低求助积分说明 831717