算法
正交矩阵
数学
盲信号分离
基质(化学分析)
对角线的
雅可比法
接头(建筑物)
对角矩阵
雅可比特征值算法
规范(哲学)
趋同(经济学)
应用数学
计算复杂性理论
混合(物理)
计算机科学
正交基
几何学
建筑工程
工程类
频道(广播)
材料科学
法学
经济增长
计算机网络
复合材料
量子力学
政治学
物理
经济
标识
DOI:10.1109/tsp.2009.2016997
摘要
A new algorithm for computing the nonorthogonal joint diagonalization of a set of matrices is proposed for independent component analysis and blind source separation applications. This algorithm is an extension of the Jacobi-like algorithm first proposed in the joint approximate diagonalization of eigenmatrices (JADE) method for orthogonal joint diagonalization. The improvement consists mainly in computing a mixing matrix of determinant one and columns of equal norm instead of an orthogonal mixing matrix. This target matrix is constructed iteratively by successive multiplications of not only Givens rotations but also hyperbolic rotations and diagonal matrices. The algorithm performance, evaluated on synthetic data, compares favorably with existing methods in terms of speed of convergence and complexity.
科研通智能强力驱动
Strongly Powered by AbleSci AI