离域电子
范德瓦尔斯力
电子
化学物理
电子转移
原子物理学
接受者
密度泛函理论
分子物理学
连贯性(哲学赌博策略)
异质结
电荷(物理)
放松(心理学)
凝聚态物理
化学
物理
分子
计算化学
光化学
量子力学
心理学
社会心理学
有机化学
作者
Run Long,Oleg V. Prezhdo
出处
期刊:Nano Letters
[American Chemical Society]
日期:2016-02-16
卷期号:16 (3): 1996-2003
被引量:269
标识
DOI:10.1021/acs.nanolett.5b05264
摘要
Two-dimensional transition metal dichalcogenides (MX2, M = Mo, W; X = S, Se) hold great potential in optoelectronics and photovoltaics. To achieve efficient light-to-electricity conversion, electron-hole pairs must dissociate into free charges. Coulomb interaction in MX2 often exceeds the charge transfer driving force, leading one to expect inefficient charge separation at a MX2 heterojunction. Experiments defy the expectation. Using time-domain density functional theory and nonadiabatic (NA) molecular dynamics, we show that quantum coherence and donor-acceptor delocalization facilitate rapid charge transfer at a MoS2/MoSe2 interface. The delocalization is larger for electron than hole, resulting in longer coherence and faster transfer. Stronger NA coupling and higher acceptor state density accelerate electron transfer further. Both electron and hole transfers are subpicosecond, which is in agreement with experiments. The transfers are promoted primarily by the out-of-plane Mo-X modes of the acceptors. Lighter S atoms, compared to Se, create larger NA coupling for electrons than holes. The relatively slow relaxation of the "hot" hole suggests long-distance bandlike transport, observed in organic photovoltaics. The electron-hole recombination is notably longer across the MoS2/MoSe2 interface than in isolated MoS2 and MoSe2, favoring long-lived charge separation. The atomistic, time-domain studies provide valuable insights into excitation dynamics in two-dimensional transition metal dichalcogenides.
科研通智能强力驱动
Strongly Powered by AbleSci AI