计算机科学
熵(时间箭头)
人工智能
概率逻辑
决策模型
机器学习
数据挖掘
量子力学
物理
作者
Yixin Zhang,Zhinan Hao,Zeshui Xu,Xiao‐Jun Zeng,Xinxin Xu
标识
DOI:10.1016/j.knosys.2021.107594
摘要
As an effective tool to describe qualitative evaluations, probabilistic linguistic term set (PLTS) can identify the different preference degrees for the possible linguistic evaluations. For the multi-attribute decision making (MADM) problems based on the PLTSs, making decisions is not instantaneous behavior but needs some time to complete information processing. Considering the dynamic nature of decision-making behavior, this study aims to develop a process-oriented probabilistic linguistic decision-making framework. First, we introduce the parameters in the probabilistic linguistic multi-alternative decision field theory (PLMDFT) model. An improved decision rule for selecting the optimal alternative(s) is also presented. Then, a deviation entropy-based model is developed to determine attribute weights. Furthermore, we construct a probabilistic linguistic decision-making framework based on the PLMDFT and deviation entropy. Finally, the constructed framework is applied to solve emergency scheme selection problem. Some discussion and comparative analysis is complemented to demonstrate the validity of the proposed framework.
科研通智能强力驱动
Strongly Powered by AbleSci AI