Microfluidic integration of regeneratable electrochemical affinity-based biosensors for continual monitoring of organ-on-a-chip devices

微流控 生物传感器 纳米技术 炸薯条 微流控芯片 实验室晶片 计算机科学 芯片上器官 材料科学 计算生物学 生物医学工程 生物 化学 医学 电信
作者
Julio Aleman,Tuğba Kiliç,Luis Santiago Mille,Su Ryon Shin,Yu Shrike Zhang
出处
期刊:Nature Protocols [Nature Portfolio]
卷期号:16 (5): 2564-2593 被引量:125
标识
DOI:10.1038/s41596-021-00511-7
摘要

Organs-on-chips have emerged as viable platforms for drug screening and personalized medicine. While a wide variety of human organ-on-a-chip models have been developed, rarely have there been reports on the inclusion of sensors, which are critical in continually measuring the microenvironmental parameters and the dynamic responses of the microtissues to pharmaceutical compounds over extended periods of time. In addition, automation capacity is strongly desired for chronological monitoring. To overcome this major hurdle, in this protocol we detail the fabrication of electrochemical affinity-based biosensors and their integration with microfluidic chips to achieve in-line microelectrode functionalization, biomarker detection and sensor regeneration, allowing continual, in situ and noninvasive quantification of soluble biomarkers on organ-on-a-chip platforms. This platform is almost universal and can be applied to in-line detection of a majority of biomarkers, can be connected with existing organ-on-a-chip devices and can be multiplexed for simultaneous measurement of multiple biomarkers. Specifically, this protocol begins with fabrication of the electrochemically competent microelectrodes and the associated microfluidic devices (~3 d). The integration of electrochemical biosensors with the chips and their further combination with the rest of the platform takes ~3 h. The functionalization and regeneration of the microelectrodes are subsequently described, which require ~7 h in total. One cycle of sampling and detection of up to three biomarkers accounts for ~1 h.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
momo完成签到,获得积分10
1秒前
菓小柒完成签到 ,获得积分10
1秒前
1秒前
2秒前
李健应助小青蛙OA采纳,获得10
3秒前
PsyZhangxinxin完成签到,获得积分10
4秒前
阔达乐松关注了科研通微信公众号
6秒前
王小橘完成签到,获得积分10
7秒前
阿虎发布了新的文献求助10
7秒前
7秒前
8秒前
Liangyu完成签到,获得积分10
8秒前
小二郎应助Albee采纳,获得10
8秒前
JamesPei应助王大纯采纳,获得30
8秒前
蚂蚁应助lanhaishibei采纳,获得10
9秒前
小马甲应助lhs采纳,获得30
9秒前
桐桐应助ababbbbyy采纳,获得10
9秒前
浅池星完成签到 ,获得积分10
10秒前
天天快乐应助ws采纳,获得10
10秒前
缥缈的寒梦完成签到,获得积分10
10秒前
隐形曼青应助隐形半烟采纳,获得30
13秒前
17秒前
慕青应助敬老院N号采纳,获得10
20秒前
传奇3应助敬老院N号采纳,获得10
20秒前
思源应助敬老院N号采纳,获得10
20秒前
传奇3应助敬老院N号采纳,获得10
20秒前
丘比特应助敬老院N号采纳,获得10
20秒前
呆萌的乾发布了新的文献求助10
21秒前
22秒前
orixero应助王崇然采纳,获得10
24秒前
科研通AI5应助cbbb采纳,获得10
25秒前
26秒前
zjw发布了新的文献求助10
26秒前
Wendy发布了新的文献求助20
27秒前
yanyu完成签到,获得积分10
27秒前
27秒前
31秒前
MingJia完成签到,获得积分10
32秒前
小青蛙OA发布了新的文献求助10
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
CAR T-Cell, An Issue of Hematology/Oncology Clinics of North America 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831665
求助须知:如何正确求助?哪些是违规求助? 3373862
关于积分的说明 10481844
捐赠科研通 3093776
什么是DOI,文献DOI怎么找? 1703037
邀请新用户注册赠送积分活动 819267
科研通“疑难数据库(出版商)”最低求助积分说明 771340