DSS: A hybrid deep model for fake news detection using propagation tree and stance network

杠杆(统计) 计算机科学 编码 树(集合论) 社会化媒体 数据挖掘 领域(数学) 图形 机器学习 背景(考古学) 人工智能 理论计算机科学 万维网 基因 生物 数学分析 古生物学 化学 纯数学 生物化学 数学
作者
Mansour Davoudi,Mohammad R. Moosavi,Mohammad Hadi Sadreddini
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:198: 116635-116635 被引量:67
标识
DOI:10.1016/j.eswa.2022.116635
摘要

Nowadays, online social media play a significant role in news broadcasts due to their convenience, speed, and accessibility. Social media platforms leverage the rapid production of a large volume of information and cause the propagation of untrustworthy and fake news. Since fake news is engineered to deceive a wide range of readers deliberately, it is not easy to detect them merely based on the news content. Hence, more information, such as the social context, is needed. Moreover, to limit the impact of fake news on society, it is essential to detect them as early as possible. In this paper, we have developed an automated system “DSS” for the early detection of fake news wherein we leverage the propagation tree and the stance network simultaneously and dynamically. Our proposed model comprises three major components: Dynamic analysis, Static analysis, and Structural analysis. During dynamic analysis, a recurrent neural network is used to encode the evolution pattern of the propagation tree and the stance network over time. The static analysis uses a fully connected network to precisely represent the overall characteristics of the propagation tree and the stance network at the end of a detection deadline. The node2vec algorithm is used during structural analysis as a graph embedding model to encode the structure of the propagation tree and the stance network. Finally, the outputs of these components are aggregated to determine the veracity of the news articles. Our proposed model is evaluated on the FakeNewsNet repository, comprising two recent well-known datasets in the field, namely PolitiFact and GossipCop. Our results show encouraging performance, outperforming the state-of-the-art methods by 8.2% on the PolitiFact and 3% on the GossipCop datasets. Early detection of fake news is the merit of the proposed model. The DSS model provides outstanding accuracy in the early stages of spreading, as well as the later stages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bgsister完成签到,获得积分10
1秒前
英姑应助李淼旭采纳,获得10
3秒前
ycccccc完成签到 ,获得积分10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
孙燕应助科研通管家采纳,获得50
4秒前
完美世界应助科研通管家采纳,获得30
4秒前
JamesPei应助科研通管家采纳,获得20
4秒前
Alex应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
小叮当完成签到,获得积分10
5秒前
asdwind完成签到,获得积分10
8秒前
默幻弦完成签到,获得积分10
8秒前
JerryZ发布了新的文献求助50
9秒前
11完成签到,获得积分20
9秒前
科研通AI5应助乔心采纳,获得10
10秒前
Chambray完成签到,获得积分20
11秒前
积雪发布了新的文献求助10
11秒前
翁雁丝发布了新的文献求助10
13秒前
Hello应助司徒寒烟采纳,获得10
17秒前
迟迟不吃吃完成签到 ,获得积分10
19秒前
19秒前
AppleDog完成签到,获得积分10
19秒前
moumou完成签到,获得积分10
23秒前
小龚完成签到 ,获得积分10
24秒前
tang发布了新的文献求助10
25秒前
26秒前
田様应助james采纳,获得50
27秒前
27秒前
27秒前
风起云涌完成签到,获得积分10
29秒前
张留留发布了新的文献求助10
29秒前
李爱国应助rr123456采纳,获得10
31秒前
zhuwg完成签到,获得积分10
32秒前
英俊的铭应助tang采纳,获得10
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846100
求助须知:如何正确求助?哪些是违规求助? 3388485
关于积分的说明 10553181
捐赠科研通 3109045
什么是DOI,文献DOI怎么找? 1713300
邀请新用户注册赠送积分活动 824692
科研通“疑难数据库(出版商)”最低求助积分说明 774982