色素敏化染料
材料科学
兴奋剂
带隙
化学气相沉积
薄膜
太阳能电池
氧化锡
辅助电极
氧化铟锡
铟
化学浴沉积
化学工程
电解质
纳米技术
无机化学
光电子学
电极
化学
工程类
物理化学
作者
Sehar Shakir,Hafiz M. Abd-ur-Rehman,Kamran Yunus,Mitsumasa Iwamoto,Vengadesh Periasamy
标识
DOI:10.1016/j.jallcom.2017.12.165
摘要
A Photoanode in dye sensitized solar cell is responsible for photoabsorption and conduction of the generated electrons for which TiO2 is a highly employed material due to its non-toxic nature and low cost. This study reports a convenient and facile method to prepare un-doped and magnesium (Mg) doped TiO2 thin films using Aerosol assisted Chemical Vapor deposition on Indium doped Tin oxide substrates. The as prepared films were subjected to morphological and structural characterizations as well as the optical absorption, band gap and surface area measurements of films. The studies indicated that Mg substituted Ti in the TiO2 lattice and formed new energy levels which decreased the band gap of the doped films. Moreover, increasing the concentration of Mg shifted the optical absorption of the films from ultra-violet region to the visible region. The IV measurements of the DSSCs fabricated using 2 mol% Mg doped TiO2 film, N719 dye, I−/I3− redox electrolyte and platinum sputtered on ITO counter electrode, revealed approximately twofold increase in overall efficiency of DSSCs as compared to undoped TiO2 based DSSC. The increase in Voc and Jsc, as well as the efficiency of 6.1%, is an indication that 2 mol% Mg doped TiO2 film is a potential candidate as a photoanode material in DSSC.
科研通智能强力驱动
Strongly Powered by AbleSci AI