CABNet: Category Attention Block for Imbalanced Diabetic Retinopathy Grading

判别式 计算机科学 卷积神经网络 人工智能 模式识别(心理学) 分级(工程) 机器学习 深度学习 工程类 土木工程
作者
Along He,Tao Li,Ning Li,Kai Wang,Huazhu Fu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (1): 143-153 被引量:255
标识
DOI:10.1109/tmi.2020.3023463
摘要

Diabetic Retinopathy (DR) grading is challenging due to the presence of intra-class variations, small lesions and imbalanced data distributions. The key for solving fine-grained DR grading is to find more discriminative features corresponding to subtle visual differences, such as microaneurysms, hemorrhages and soft exudates. However, small lesions are quite difficult to identify using traditional convolutional neural networks (CNNs), and an imbalanced DR data distribution will cause the model to pay too much attention to DR grades with more samples, greatly affecting the final grading performance. In this article, we focus on developing an attention module to address these issues. Specifically, for imbalanced DR data distributions, we propose a novel Category Attention Block (CAB), which explores more discriminative region-wise features for each DR grade and treats each category equally. In order to capture more detailed small lesion information, we also propose the Global Attention Block (GAB), which can exploit detailed and class-agnostic global attention feature maps for fundus images. By aggregating the attention blocks with a backbone network, the CABNet is constructed for DR grading. The attention blocks can be applied to a wide range of backbone networks and trained efficiently in an end-to-end manner. Comprehensive experiments are conducted on three publicly available datasets, showing that CABNet produces significant performance improvements for existing state-of-the-art deep architectures with few additional parameters and achieves the state-of-the-art results for DR grading. Code and models will be available at https://github.com/he2016012996/CABnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒柒球完成签到,获得积分10
刚刚
刚刚
花花完成签到 ,获得积分10
1秒前
卑微学术人完成签到 ,获得积分10
1秒前
冷酷芫完成签到,获得积分10
2秒前
Star完成签到,获得积分10
3秒前
行萱完成签到 ,获得积分10
3秒前
帅气的帆布鞋完成签到,获得积分20
4秒前
wzy完成签到,获得积分10
4秒前
ruixuekuangben完成签到,获得积分10
4秒前
jiyuan完成签到,获得积分10
4秒前
合适的寄灵完成签到 ,获得积分10
5秒前
朴素青寒完成签到,获得积分10
5秒前
菠萝汁完成签到,获得积分10
5秒前
简单冰淇淋完成签到,获得积分10
7秒前
7秒前
爆米花完成签到,获得积分10
7秒前
和谐尔阳完成签到 ,获得积分10
7秒前
8秒前
哈哈完成签到,获得积分10
9秒前
平常的雁凡完成签到,获得积分20
9秒前
缥缈纲举报天雨流芳求助涉嫌违规
9秒前
无限的寄真完成签到 ,获得积分10
10秒前
dy完成签到,获得积分10
10秒前
时空掌门人完成签到,获得积分10
10秒前
11秒前
白色的风车完成签到,获得积分10
11秒前
12秒前
孙乐777完成签到,获得积分10
13秒前
chen完成签到,获得积分10
14秒前
1111完成签到,获得积分10
16秒前
starwan完成签到 ,获得积分10
17秒前
刘三哥完成签到 ,获得积分10
17秒前
石斑鱼完成签到,获得积分10
18秒前
科研通AI5应助科研疯狗采纳,获得30
20秒前
子唯完成签到,获得积分10
21秒前
求学路上完成签到,获得积分10
21秒前
11完成签到,获得积分10
22秒前
58984sasa完成签到,获得积分10
22秒前
李健的小迷弟应助达达采纳,获得30
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795639
求助须知:如何正确求助?哪些是违规求助? 3340742
关于积分的说明 10301387
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805488
科研通“疑难数据库(出版商)”最低求助积分说明 762626