材料科学
非阻塞I/O
钙钛矿(结构)
介观物理学
电极
碳纤维
化学工程
钙钛矿太阳能电池
纳米技术
太阳能电池
光电子学
复合材料
催化作用
凝聚态物理
物理化学
复合数
工程类
化学
物理
生物化学
作者
Fatemeh Behrouznejad,C. C. Tsai,Sudhakar Narra,Eric Wei‐Guang Diau,Nima Taghavinia
标识
DOI:10.1021/acsami.7b02799
摘要
Solar cells with high efficiency, low cost, and high stability are the target for the new generation of solar cells. A fully printable perovskite (CH3NH3PbI3) solar cell (PSC) with device architecture FTO/TiO2/Al2O3/NiOx/C is fabricated in the current research as a low-cost and relatively stable structure and is investigated to determine how different fabrication factors such as the thickness of the insulating spacer layer (Al2O3) or treatments such as heat and UV-O3 treatments can affect the interfacial properties of this multilayer mesoporous structure. X-ray photoelectron spectra (XPS) show that UV-O3 treatment increases the Ni3+(Ni2O3) phase on the surface of the black nickel oxide layer leading to better charge extraction and increasing open-circuit voltage (VOC) up to 0.945 V. We observe improved CH3NH3PbI3 formation inside the mesoporous layers by the PbI2 penetration at a higher temperature. Impedance spectral together with current-voltage measurements show the effect of thickness for the insulator layer in the internal and interfacial resistances and photovoltaic characteristics of the cell. The best performance of the carbon-based PSC attains power conversion efficiency of 12.1% with the thickness of the Al2O3 layer at 450 nm.
科研通智能强力驱动
Strongly Powered by AbleSci AI