Multimodal Co-Attention Transformer for Survival Prediction in Gigapixel Whole Slide Images

计算机科学 编码器 人工智能 机器学习 变压器 深度学习 模式识别(心理学) 特征学习 答疑 可视化 突出 量子力学 操作系统 物理 电压
作者
Richard J. Chen,Ming Y. Lu,Wei‐Hung Weng,Tiffany Chen,Drew F. K. Williamson,Trevor Manz,Maha Shady,Faisal Mahmood
标识
DOI:10.1109/iccv48922.2021.00398
摘要

Survival outcome prediction is a challenging weakly-supervised and ordinal regression task in computational pathology that involves modeling complex interactions within the tumor microenvironment in gigapixel whole slide images (WSIs). Despite recent progress in formulating WSIs as bags for multiple instance learning (MIL), representation learning of entire WSIs remains an open and challenging problem, especially in overcoming: 1) the computational complexity of feature aggregation in large bags, and 2) the data heterogeneity gap in incorporating biological priors such as genomic measurements. In this work, we present a Multimodal Co-Attention Transformer (MCAT) framework that learns an interpretable, dense co-attention mapping between WSIs and genomic features formulated in an embedding space. Inspired by approaches in Visual Question Answering (VQA) that can attribute how word embed-dings attend to salient objects in an image when answering a question, MCAT learns how histology patches attend to genes when predicting patient survival. In addition to visualizing multimodal interactions, our co-attention trans-formation also reduces the space complexity of WSI bags, which enables the adaptation of Transformer layers as a general encoder backbone in MIL. We apply our proposed method on five different cancer datasets (4,730 WSIs, 67 million patches). Our experimental results demonstrate that the proposed method consistently achieves superior performance compared to the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幸福广山发布了新的文献求助10
刚刚
小橙同学完成签到 ,获得积分10
刚刚
顺心的自行车完成签到,获得积分10
1秒前
1秒前
sresr发布了新的文献求助10
2秒前
能能完成签到,获得积分10
2秒前
2秒前
yhx发布了新的文献求助10
2秒前
欣喜踏歌发布了新的文献求助30
3秒前
4秒前
4秒前
hzx应助thl采纳,获得10
5秒前
5秒前
白辞完成签到,获得积分10
5秒前
酷波er应助迷人宛采纳,获得10
6秒前
6秒前
佟寄灵完成签到 ,获得积分10
6秒前
科研通AI5应助blue采纳,获得10
7秒前
慕青应助ZhangYunxuan采纳,获得10
7秒前
7秒前
kmg发布了新的文献求助10
7秒前
舒物完成签到,获得积分10
8秒前
PENGDOCTOR发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
8秒前
dongdong完成签到,获得积分10
9秒前
啊锋完成签到,获得积分10
10秒前
10秒前
HHH完成签到,获得积分10
10秒前
10秒前
11秒前
科研通AI5应助大意的安白采纳,获得10
11秒前
行者发布了新的文献求助10
11秒前
11秒前
11秒前
上官若男应助不爱喝可乐采纳,获得10
12秒前
专注的绾绾关注了科研通微信公众号
12秒前
小小莫发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790218
求助须知:如何正确求助?哪些是违规求助? 3334933
关于积分的说明 10272867
捐赠科研通 3051419
什么是DOI,文献DOI怎么找? 1674665
邀请新用户注册赠送积分活动 802741
科研通“疑难数据库(出版商)”最低求助积分说明 760846