Selection of Cu2+ for intercalation from the electronegativity perspective: Improving the cycle stability and rate performance of δ-MnO2 cathode material for aqueous zinc-ion batteries

电负性 插层(化学) 电化学 阴极 电解质 电极 水溶液 无机化学 化学 材料科学 离子 化学工程 物理化学 有机化学 工程类
作者
Zhenhua Liu,Yanpeng Liu,Yanan Zhang,Xiaoli Liu,De Yan,Juanjuan Huang,Shanglong Peng
出处
期刊:Science China. Materials [Springer Science+Business Media]
卷期号:66 (2): 531-540 被引量:29
标识
DOI:10.1007/s40843-022-2179-7
摘要

Ion intercalation is an effective strategy for improving the cycle stability and rate performance of δ-MnO2 as a cathode material for aqueous zinc-ion batteries. However, in practice, ion selection appears rather arbitrary. In this work, Cu2+ was chosen for δ-MnO2 intercalation because although Cu2+ and Zn2+ have similar diameters, Cu2+ has a slightly higher electronegativity (1.359) than Zn2+ (1.347). Therefore, Cu2+ has a stronger interaction with the MnO2 lattice than Zn2+ and can be stable during the intercalation/deintercalation of Zn2+ and H+. Results showed that the performance of Cu-doped δ-MnO2 (CMO) was greatly improved. Moreover, at the high current density of 2 A g−1, CMO achieved excellent cycle stability with 100% capacity retention after 600 cycles, whereas pristine δ-MnO2 exhibited only 23% capacity retention. When the current density was increased from 0.2 to 2.0 A g−1, the CMO electrode also delivered remarkable rate performance with 72% capacity retention, which was considerably higher than the 32% capacity retention demonstrated by pristine δ-MnO2. Given that Cu2+ has a greater electronegativity than Zn2+, the Cu-O bond formed in CMO acted as a stable structural column and greatly improved the stability of CMO. Cu2+ doping also increased the electronic conductivity and ionic conductivity of CMO and reduced the charge transfer resistance of H+ and Zn2+ at the electrode/electrolyte interface, which improved the rate performance of CMO greatly. This work provides new insights into intercalation strategies to improve the electrochemical performance of batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
今后应助闫_采纳,获得10
1秒前
蜕变发布了新的文献求助10
2秒前
小宝爸爸完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
6秒前
7秒前
zho发布了新的文献求助10
8秒前
珺儿完成签到,获得积分10
10秒前
10秒前
12秒前
12秒前
珺儿发布了新的文献求助10
13秒前
14秒前
15秒前
杨志坚完成签到 ,获得积分10
15秒前
15秒前
Hina完成签到,获得积分10
16秒前
bkagyin应助小丑鱼儿采纳,获得10
16秒前
星光点点完成签到 ,获得积分10
18秒前
灵鹿发布了新的文献求助10
18秒前
18秒前
大鲨鱼完成签到,获得积分10
18秒前
18秒前
呆萌的太阳完成签到 ,获得积分10
19秒前
科研通AI5应助SunSun采纳,获得10
19秒前
19秒前
wsd发布了新的文献求助10
20秒前
白茶完成签到,获得积分10
20秒前
脑洞疼应助智慧的颜色采纳,获得10
21秒前
科研通AI2S应助坚果儿采纳,获得10
21秒前
22秒前
斯文的毛豆完成签到 ,获得积分10
23秒前
23秒前
爆米花应助冰千蕙采纳,获得10
24秒前
xiaochouyu发布了新的文献求助10
24秒前
25秒前
文静的千秋完成签到,获得积分10
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843639
求助须知:如何正确求助?哪些是违规求助? 3385923
关于积分的说明 10542998
捐赠科研通 3106709
什么是DOI,文献DOI怎么找? 1711095
邀请新用户注册赠送积分活动 823920
科研通“疑难数据库(出版商)”最低求助积分说明 774383