EPT-GCN: Edge propagation-based time-aware graph convolution network for POI recommendation

计算机科学 GSM演进的增强数据速率 图形 推荐系统 卷积(计算机科学) 追踪 情报检索 数据挖掘 人工智能 机器学习 理论计算机科学 人工神经网络 操作系统
作者
Fan Mo,Hayato Yamana
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:543: 126272-126272 被引量:7
标识
DOI:10.1016/j.neucom.2023.126272
摘要

In location-based social networks (LBSNs), point-of-interest (POI) recommendation systems help users identify unvisited POIs by filtering large amounts of information. Accurate POI recommendations can effectively improve user satisfaction and save time in finding POIs. In recent years, the graph convolution network (GCN) technique, which enhances the representational ability of neural networks by learning the embeddings of users and items, has been widely adopted in recommendation systems to improve accuracy. Combining GCN with various information, such as time and geographical information, can further improve recommendation performance. However, existing GCN-based techniques simply adopt time information by modeling users' check-in sequences, which is insufficient and ignores users' time-based high-order connectivity. Note that time-based high-order connectivity refers to the relationship between indirect neighbors with similar preferences in the same time slot. In this paper, we propose a new time-aware GCN model to extract rich collaborative signals contained in time information. Our work is the first to divide user check-ins into multiple subgraphs, i.e., time slots, based on time information. We further propose an edge propagation module to adjust edge affiliation, where edges represent check-ins, to propagate user's time-based preference to multiple time slots. The propagation module is based on an unsupervised learning algorithm and does not require additional ground-truth labels. Experimental results confirm that our method outperforms state-of-the-art GCN models in all baselines, improving Recall@5 from 0.0803 to 0.0874 (8.84%) on the Gowalla dataset and from 0.0360 to 0.0388 (7.78%) on the New York dataset. The proposed subgraph mining technique and novel edge-based propagation module have high scalability and can be applied to other subgraph construction models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
刚刚
鸣笛应助科研通管家采纳,获得30
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
1秒前
鸣笛应助科研通管家采纳,获得30
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
iNk应助科研通管家采纳,获得20
1秒前
Huiiyi应助科研通管家采纳,获得10
1秒前
流水应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
2秒前
星辰大海应助典雅的俊驰采纳,获得10
3秒前
3秒前
周小鱼完成签到,获得积分10
4秒前
4秒前
深情安青应助小萝卜莉采纳,获得10
5秒前
SOBER刘晗发布了新的文献求助10
5秒前
5秒前
7秒前
Sunwenrui完成签到,获得积分20
7秒前
打打应助lz采纳,获得20
8秒前
rubywang发布了新的文献求助10
8秒前
暮鼓完成签到,获得积分10
8秒前
Ula发布了新的文献求助10
9秒前
10秒前
窝窝头发布了新的文献求助10
11秒前
11秒前
包包完成签到 ,获得积分10
11秒前
12秒前
李健的粉丝团团长应助柒z采纳,获得10
12秒前
天真的嚓茶完成签到,获得积分10
13秒前
科研通AI2S应助Rhan采纳,获得10
13秒前
16秒前
昭奚发布了新的文献求助10
16秒前
步愁发布了新的文献求助10
17秒前
17秒前
窝窝头完成签到,获得积分10
17秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
Magnum Contact Sheets 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897154
求助须知:如何正确求助?哪些是违规求助? 3441069
关于积分的说明 10819764
捐赠科研通 3166034
什么是DOI,文献DOI怎么找? 1749137
邀请新用户注册赠送积分活动 845143
科研通“疑难数据库(出版商)”最低求助积分说明 788434