Short-term traffic flow prediction based on optimized deep learning neural network: PSO-Bi-LSTM

粒子群优化 计算机科学 人工神经网络 流量(计算机网络) 人工智能 自回归积分移动平均 稳健性(进化) 智能交通系统 深度学习 感知器 机器学习 时间序列 工程类 基因 化学 土木工程 生物化学 计算机安全
作者
Bharti,Poonam Redhu,Kranti Kumar
出处
期刊:Physica D: Nonlinear Phenomena [Elsevier BV]
卷期号:625: 129001-129001 被引量:113
标识
DOI:10.1016/j.physa.2023.129001
摘要

Traffic flow prediction is important for urban planning and traffic congestion alleviation as well as for intelligent traffic management systems. Due to the periodic characteristics and high fluctuation in short-term periods, it is difficult to accurately estimate future patterns in traffic flow on the urban road network. Thus, to forecast short-term traffic flow, a PSO-Bi-LSTM model based on the combination of Particle Swarm Optimization (PSO) and Bidirectional-Long Short-Term Memory (Bi-LSTM) neural network is developed in this paper. The PSO approach, which searches for the best parameters of a model on a global scale is used and nonlinear variable inertial weights are considered instead of linear weight. Additionally, the Bi-LSTM network prediction model is optimized using the PSO technique, which has the advantages of rapid convergence, high robustness, and large global search ability. To test the performance of the proposed model, traffic flow data has been collected from the Inner Ring Road, South Extension, Delhi, India. The performance of proposed PSO-Bi-LSTM model has been compared with other existing neural network models, e.g., Bi-LSTM, LSTM, Extreme Learning Machine (ELM), Gated Recurrent Unit (GRU), Wavelet Neural Network (WNN), Multilayer perceptron (MLP), and Autoregressive Integrated Moving Average (ARIMA). Experimental findings demonstrated that the proposed PSO-Bi-LSTM model has significantly outperformed the other models in terms of accuracy and stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乱糟糟完成签到,获得积分20
1秒前
小于完成签到,获得积分10
1秒前
简默完成签到,获得积分10
1秒前
Woowon发布了新的文献求助10
1秒前
至幸发布了新的文献求助10
3秒前
3秒前
4秒前
李爱国应助aa采纳,获得10
4秒前
5秒前
小欣完成签到,获得积分20
5秒前
6秒前
烂漫猫咪发布了新的文献求助10
6秒前
元问晴发布了新的文献求助10
7秒前
7秒前
8秒前
传奇3应助Woowon采纳,获得10
8秒前
9秒前
10秒前
FFF发布了新的文献求助10
11秒前
小欣发布了新的文献求助10
11秒前
11秒前
43他发布了新的文献求助10
11秒前
11秒前
water完成签到,获得积分0
13秒前
13秒前
XLin发布了新的文献求助10
13秒前
烂漫猫咪完成签到,获得积分10
14秒前
14秒前
科研通AI6应助红温卡学妹采纳,获得10
14秒前
科研通AI5应助红温卡学妹采纳,获得10
14秒前
jjy完成签到,获得积分10
15秒前
徐妮发布了新的文献求助10
16秒前
在水一方应助lisa采纳,获得10
16秒前
aa完成签到,获得积分10
17秒前
元问晴完成签到,获得积分10
18秒前
18秒前
嘟嘟嘟发布了新的文献求助10
19秒前
隐形发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4370282
求助须知:如何正确求助?哪些是违规求助? 3868337
关于积分的说明 12060654
捐赠科研通 3510913
什么是DOI,文献DOI怎么找? 1926752
邀请新用户注册赠送积分活动 968736
科研通“疑难数据库(出版商)”最低求助积分说明 867673