Research on a concrete compressive strength prediction method based on the random forest and LCSSA-improved BP neural network

抗压强度 人工神经网络 非线性系统 计算机科学 随机森林 惯性 反向传播 拟合优度 结构工程 算法 机器学习 工程类 材料科学 复合材料 物理 经典力学 量子力学
作者
Wang Ke-wei,Jie Ren,Jianwen Yan,Xiangnan Wu,Dang Fa-ning
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:76: 107150-107150 被引量:13
标识
DOI:10.1016/j.jobe.2023.107150
摘要

The compressive strength of high-performance concrete (HPC) determines the safety of the structural engineering in modern construction projects. The compressive strength of high-performance concrete (HPC) is a highly nonlinear function of its components. To better predict the compressive strength of HPC, the initial population of the Sparrow Search Algorithm was improved based on Logistic Chaos Mapping and Nonlinear Decreasing Inertia Weight Method, and the initial weights and thresholds of the BP neural network are optimized using this algorithm to establish the RF-LCSSA-BP model for predicting the mechanical properties of HPC. Finally, the RF-LCSSA-BP model, classic algorithms, and improved SSA were used to predict the compressive strength of HPC under the influence of six factors, and the prediction results are compared and analyzed. The results show that the RF-LCSSA-BP model can predict the compressive strength of HPC better and has more advantages than the traditional methods in terms of goodness of fit and prediction accuracy. Its training error and prediction error are less than 5%, and its R2 value is close to 1. It can significantly reduce the test requirements and time costs and has important engineering significance for predicting the strength of concrete and concrete mix design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助lelele采纳,获得10
刚刚
顺利的若灵完成签到,获得积分10
1秒前
1秒前
guantlv发布了新的文献求助10
1秒前
1秒前
暖暖发布了新的文献求助10
1秒前
Wendy完成签到,获得积分10
2秒前
shmily完成签到,获得积分10
2秒前
酷波er应助南庭采纳,获得10
4秒前
jchen发布了新的文献求助10
4秒前
5秒前
光亮千易完成签到,获得积分10
5秒前
Lucas应助奶油兔子采纳,获得10
5秒前
5秒前
5秒前
5秒前
领导范儿应助白柚LL采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
科研通AI5应助读个博吧采纳,获得10
8秒前
受伤的小松鼠应助小郭采纳,获得20
8秒前
司空若云发布了新的文献求助30
9秒前
眯眯眼的海完成签到,获得积分10
9秒前
孟阳完成签到,获得积分10
9秒前
万能图书馆应助xtt采纳,获得10
10秒前
快乐滑板发布了新的文献求助10
10秒前
10秒前
Vincy发布了新的文献求助10
11秒前
11秒前
Lucas应助sdl采纳,获得10
11秒前
11秒前
笨笨的芫完成签到 ,获得积分10
11秒前
冷傲夜阑关注了科研通微信公众号
12秒前
benj完成签到,获得积分10
12秒前
务实映之完成签到,获得积分10
12秒前
哈哈完成签到,获得积分10
13秒前
一块钱俩完成签到,获得积分10
13秒前
kk发布了新的文献求助10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841415
求助须知:如何正确求助?哪些是违规求助? 3383528
关于积分的说明 10530178
捐赠科研通 3103621
什么是DOI,文献DOI怎么找? 1709337
邀请新用户注册赠送积分活动 823110
科研通“疑难数据库(出版商)”最低求助积分说明 773816