Multimodal Deep Learning for Cancer Survival Prediction: A Review

深度学习 癌症 人工智能 计算机科学 机器学习 医学 内科学
作者
Ge Zhang,Chenwei Ma,Chaokun Yan,Huimin Luo,Jianlin Wang,Wenjuan Liang,Junwei Luo
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:19
标识
DOI:10.2174/0115748936289033240424071522
摘要

Background:: Cancer has emerged as the "leading killer" of human health. Survival prediction is a crucial branch of cancer prognosis. It aims to estimate patients' survival risk based on their disease conditions. Accurate and efficient survival prediction is vital in cancer patients' treatment and clinical management, preventing unnecessary suffering and conserving precious medical resources. Deep learning has been extensively applied in cancer diagnosis, prognosis, and treatment management. The decreasing cost of next-generation sequencing, continuous development of related databases, and in-depth research on multimodal deep learning have provided opportunities for establishing more functionally rich and accurate survival prediction models. Objective:: The current area of cancer survival prediction still lacks a review of multimodal deep learning methods. Methods:: We conducted a statistical analysis of the relevant research on multimodal deep learning for cancer survival prediction. We first filtered keywords from 6 known relevant papers. Then, we searched PubMed and Google Scholar for relevant publications from 2018 to 2022 using "Multimodal", "Deep Learning" and "Cancer Survival Prediction" as keywords. Then, we further searched the related publications through the backward and forward citation search. Subsequently, we conducted a detailed analysis and review of these studies based on their datasets and methods. Results:: We present a comprehensive systematic review of the multimodal deep learning research on cancer survival prediction from 2018 to 2022. Conclusion:: Multimodal deep learning has demonstrated powerful data aggregation capabilities and excellent performance in improving cancer survival prediction greatly. It has made a significant positive impact on facilitating the advancement of automated cancer diagnosis and precision oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王博士完成签到 ,获得积分10
1秒前
阿靖完成签到,获得积分10
1秒前
乐乐应助轩轩采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
小蘑菇应助jarrykim采纳,获得10
3秒前
3秒前
3秒前
宋怡慷完成签到,获得积分10
3秒前
讨厌麻烦发布了新的文献求助10
4秒前
草莓味的榴莲完成签到,获得积分10
4秒前
lovence完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Hoffman完成签到,获得积分20
5秒前
咖喱酱完成签到,获得积分10
5秒前
ling完成签到,获得积分10
5秒前
方秋完成签到,获得积分10
6秒前
华仔应助云雨采纳,获得10
6秒前
6秒前
dinglingling完成签到 ,获得积分10
6秒前
ssk发布了新的文献求助10
7秒前
赘婿应助无铭采纳,获得10
7秒前
wq发布了新的文献求助10
8秒前
8秒前
YCW完成签到,获得积分10
8秒前
梅里发布了新的文献求助10
8秒前
8秒前
Shenby完成签到,获得积分10
8秒前
CNSer完成签到,获得积分10
8秒前
11发布了新的文献求助10
9秒前
9秒前
咖喱酱发布了新的文献求助10
10秒前
lw完成签到,获得积分10
10秒前
大气元彤发布了新的文献求助10
10秒前
11秒前
大方乘云完成签到 ,获得积分10
11秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820576
求助须知:如何正确求助?哪些是违规求助? 3363504
关于积分的说明 10422977
捐赠科研通 3081912
什么是DOI,文献DOI怎么找? 1695276
邀请新用户注册赠送积分活动 815042
科研通“疑难数据库(出版商)”最低求助积分说明 768819