Multimodal Deep Learning for Cancer Survival Prediction: A Review

深度学习 癌症 人工智能 计算机科学 机器学习 医学 内科学
作者
Ge Zhang,Chenwei Ma,Chaokun Yan,Huimin Luo,Jianlin Wang,Wenjuan Liang,Junwei Luo
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19 被引量:1
标识
DOI:10.2174/0115748936289033240424071522
摘要

Background:: Cancer has emerged as the "leading killer" of human health. Survival prediction is a crucial branch of cancer prognosis. It aims to estimate patients' survival risk based on their disease conditions. Accurate and efficient survival prediction is vital in cancer patients' treatment and clinical management, preventing unnecessary suffering and conserving precious medical resources. Deep learning has been extensively applied in cancer diagnosis, prognosis, and treatment management. The decreasing cost of next-generation sequencing, continuous development of related databases, and in-depth research on multimodal deep learning have provided opportunities for establishing more functionally rich and accurate survival prediction models. Objective:: The current area of cancer survival prediction still lacks a review of multimodal deep learning methods. Methods:: We conducted a statistical analysis of the relevant research on multimodal deep learning for cancer survival prediction. We first filtered keywords from 6 known relevant papers. Then, we searched PubMed and Google Scholar for relevant publications from 2018 to 2022 using "Multimodal", "Deep Learning" and "Cancer Survival Prediction" as keywords. Then, we further searched the related publications through the backward and forward citation search. Subsequently, we conducted a detailed analysis and review of these studies based on their datasets and methods. Results:: We present a comprehensive systematic review of the multimodal deep learning research on cancer survival prediction from 2018 to 2022. Conclusion:: Multimodal deep learning has demonstrated powerful data aggregation capabilities and excellent performance in improving cancer survival prediction greatly. It has made a significant positive impact on facilitating the advancement of automated cancer diagnosis and precision oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jeffny完成签到 ,获得积分10
1秒前
斯文败类应助林小鱼采纳,获得10
1秒前
2秒前
2秒前
隐形以晴完成签到,获得积分10
4秒前
LLL发布了新的文献求助10
4秒前
猪猪hero应助huangxiaoling采纳,获得10
8秒前
NexusExplorer应助LiShin采纳,获得10
8秒前
星河完成签到,获得积分10
8秒前
9527King发布了新的文献求助10
9秒前
15秒前
15秒前
打打应助迅速的丑采纳,获得10
15秒前
甜崽完成签到 ,获得积分10
15秒前
oneday完成签到,获得积分10
16秒前
NexusExplorer应助魅域苍穹采纳,获得10
16秒前
16秒前
FashionBoy应助灯灯采纳,获得10
16秒前
陈嘉良发布了新的文献求助10
17秒前
orixero应助欣喜成仁采纳,获得10
18秒前
franklin_fsz应助聂难敌采纳,获得50
18秒前
经小夏发布了新的文献求助10
19秒前
aa完成签到,获得积分10
19秒前
19秒前
长安宁发布了新的文献求助10
20秒前
无疾而终发布了新的文献求助50
21秒前
北冥风发布了新的文献求助10
22秒前
ocean完成签到,获得积分20
22秒前
huangyikun发布了新的文献求助10
22秒前
平静的小火锅完成签到,获得积分10
23秒前
23秒前
搞怪阁给starts的求助进行了留言
24秒前
老实凝蕊完成签到,获得积分10
24秒前
25秒前
25秒前
25秒前
陈龙平完成签到 ,获得积分10
25秒前
可爱的函函应助经小夏采纳,获得10
25秒前
Rainbow完成签到,获得积分10
26秒前
DJDJ完成签到 ,获得积分10
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930