亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Sociohydrodynamics: Data-driven modeling of social behavior

计算机科学 数据科学
作者
Daniel S. Seara,Jonathan Colen,Michel Fruchart,Yael Avni,D.G. Martin,Vincenzo Vitelli
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:122 (35)
标识
DOI:10.1073/pnas.2508692122
摘要

Living systems display complex behaviors driven by physical forces as well as decision-making. Hydrodynamic theories hold promise for simplified universal descriptions of socially generated collective behaviors. However, the construction of such theories is often divorced from the data they should describe. Here, we develop and apply a data-driven pipeline that links micromotives to macrobehavior by augmenting hydrodynamics with individual preferences that guide motion. We illustrate this pipeline on a case study of residential dynamics in the United States, for which census and sociological data are available. Guided by Census data, sociological surveys, and neural network analysis, we systematically assess standard hydrodynamic assumptions to construct a sociohydrodynamic model. Solving our minimal hydrodynamic model, calibrated using statistical inference, qualitatively captures key features of residential dynamics at the level of individual US counties. We highlight that a social memory, akin to hysteresis in magnets, emerges in the segregation–integration transition even with memory-less agents. While residential segregation is a multifactorial phenomenon, this physics analogy suggests a simple mechanistic explanation for the phenomenon of neighborhood tipping, whereby a small change in a neighborhood’s population leads to a rapid demographic shift. Beyond residential segregation, our work paves the way for systematic investigations of decision-guided motility in real space, from micro-organisms to humans, as well as fitness-mediated motion in more abstract spaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
7秒前
似水无痕完成签到,获得积分10
7秒前
824完成签到,获得积分10
7秒前
科研通AI5应助824采纳,获得10
12秒前
月球宇航员完成签到,获得积分10
24秒前
风轻萤完成签到,获得积分10
30秒前
深情安青应助吕易巧采纳,获得30
41秒前
学术小垃圾完成签到,获得积分10
41秒前
搜集达人应助刘兴采纳,获得10
43秒前
mirrovo完成签到 ,获得积分10
45秒前
小二郎应助渡增越采纳,获得10
47秒前
bkagyin应助科研通管家采纳,获得10
48秒前
所所应助科研通管家采纳,获得10
48秒前
mayhem应助科研通管家采纳,获得20
48秒前
科研通AI6应助科研通管家采纳,获得10
48秒前
Orange应助科研通管家采纳,获得10
48秒前
星辰大海应助研友_Zzrx6Z采纳,获得10
55秒前
55秒前
55秒前
58秒前
刘兴发布了新的文献求助10
1分钟前
吕易巧发布了新的文献求助30
1分钟前
小L完成签到 ,获得积分10
1分钟前
刘兴完成签到,获得积分10
1分钟前
吕易巧完成签到,获得积分10
1分钟前
1分钟前
学术地瓜完成签到 ,获得积分10
1分钟前
曾经如冬完成签到,获得积分10
1分钟前
渡增越发布了新的文献求助10
1分钟前
1分钟前
研友_Zzrx6Z完成签到,获得积分10
1分钟前
ouyangshi完成签到 ,获得积分10
1分钟前
1分钟前
ning发布了新的文献求助10
1分钟前
Kumquat完成签到,获得积分10
1分钟前
1分钟前
等待的剑身完成签到,获得积分10
1分钟前
1分钟前
ning完成签到,获得积分20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4375834
求助须知:如何正确求助?哪些是违规求助? 3871908
关于积分的说明 12067474
捐赠科研通 3514829
什么是DOI,文献DOI怎么找? 1928830
邀请新用户注册赠送积分活动 970479
科研通“疑难数据库(出版商)”最低求助积分说明 869204