Sociohydrodynamics: Data-driven modeling of social behavior

构造(python库) 现象 类比 人口 推论 计算机科学 空格(标点符号) 社会学 数据科学 管理科学 认识论 人工智能 经济 哲学 人口学 程序设计语言 操作系统
作者
Daniel S. Seara,Jonathan Colen,Michel Fruchart,Yael Avni,D.G. Martin,Vincenzo Vitelli
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:122 (35): e2508692122-e2508692122 被引量:2
标识
DOI:10.1073/pnas.2508692122
摘要

Living systems display complex behaviors driven by physical forces as well as decision-making. Hydrodynamic theories hold promise for simplified universal descriptions of socially generated collective behaviors. However, the construction of such theories is often divorced from the data they should describe. Here, we develop and apply a data-driven pipeline that links micromotives to macrobehavior by augmenting hydrodynamics with individual preferences that guide motion. We illustrate this pipeline on a case study of residential dynamics in the United States, for which census and sociological data are available. Guided by Census data, sociological surveys, and neural network analysis, we systematically assess standard hydrodynamic assumptions to construct a sociohydrodynamic model. Solving our minimal hydrodynamic model, calibrated using statistical inference, qualitatively captures key features of residential dynamics at the level of individual US counties. We highlight that a social memory, akin to hysteresis in magnets, emerges in the segregation–integration transition even with memory-less agents. While residential segregation is a multifactorial phenomenon, this physics analogy suggests a simple mechanistic explanation for the phenomenon of neighborhood tipping, whereby a small change in a neighborhood’s population leads to a rapid demographic shift. Beyond residential segregation, our work paves the way for systematic investigations of decision-guided motility in real space, from micro-organisms to humans, as well as fitness-mediated motion in more abstract spaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的鱼完成签到,获得积分10
刚刚
zhonglv7应助cfv采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
Quellaxjy发布了新的文献求助100
2秒前
NexusExplorer应助Yolo采纳,获得10
3秒前
今晚雨很大完成签到,获得积分20
3秒前
tlc_191026发布了新的文献求助10
3秒前
nhjiebio完成签到,获得积分20
4秒前
黎明发布了新的文献求助10
5秒前
李拜天完成签到,获得积分10
6秒前
TL完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
烟花应助YANYAN采纳,获得10
7秒前
华国锋完成签到,获得积分0
8秒前
8秒前
小二郎应助tlc_191026采纳,获得10
10秒前
10秒前
11秒前
研友_VZG7GZ应助佳哥闯天下采纳,获得10
11秒前
wanci应助雨过天晴采纳,获得10
11秒前
white完成签到,获得积分10
12秒前
12秒前
英俊的铭应助刘宁采纳,获得10
13秒前
演化的蛙鱼完成签到,获得积分10
13秒前
xiao完成签到 ,获得积分10
13秒前
xw完成签到,获得积分10
13秒前
550482956谢完成签到 ,获得积分10
14秒前
廖智勇发布了新的文献求助10
14秒前
微笑大螃蟹完成签到,获得积分10
15秒前
animenz完成签到,获得积分10
15秒前
wanci应助Vanessa采纳,获得10
15秒前
shunshun完成签到,获得积分20
15秒前
lky发布了新的文献求助10
16秒前
16秒前
小袁同学发布了新的文献求助10
16秒前
17秒前
房明锴完成签到,获得积分10
17秒前
17秒前
xw发布了新的文献求助10
17秒前
想飞的熊完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5721955
求助须知:如何正确求助?哪些是违规求助? 5267962
关于积分的说明 15295489
捐赠科研通 4871144
什么是DOI,文献DOI怎么找? 2615838
邀请新用户注册赠送积分活动 1565623
关于科研通互助平台的介绍 1522543