锡
材料科学
锂(药物)
固态
图层(电子)
碳纤维
对偶(语法数字)
枝晶(数学)
双层
化学工程
缓冲器(光纤)
纳米技术
化学
冶金
复合材料
复合数
计算机科学
医学
艺术
电信
几何学
文学类
数学
物理化学
工程类
内分泌学
作者
Venkata Sai Avvaru,Tofunmi Ogunfunmi,Seonghun Jeong,Mouhamad S. Diallo,John Watt,Mary Scott,Haegyeom Kim
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-04-29
标识
DOI:10.1021/acsnano.4c16271
摘要
All-solid-state lithium-metal batteries hold great promise because of their high energy density stemming from using an energy-dense lithium-metal anode. However, mitigating the dendritic lithium-metal growth, originating from heterogeneous lithium-metal deposition, is a priority to suppress short-circuit and extend cycle life. This study employs direct current (DC) magnetron sputter coating to deposit tin (Sn) and carbon (C) on a stainless steel (SUS) current collector to achieve uniform lithium-metal plating and improve cycling performance. In particular, we evaluated and compared two dual buffer layer designs, consisting of Sn and C: (1) a thin C layer is deposited on the Sn metal layer (SUS/Sn/C), and (2) the Sn metal layer is deposited on the thin C layer (SUS/C/Sn). This study demonstrated that the SUS/Sn/C buffer layer is more effective in suppressing lithium dendrite growth and improving cycling stability than the SUS/C/Sn buffer layer. The SUS/Sn/C buffer layer shows stable Li-plating/stripping cycling over 450 cycles without noticeable short-circuit. Ex situ and in situ characterization confirm the role of the SUS/Sn/C dual buffer layer: (i) the Sn metals result in a uniform lithium-metal deposition on the current collector and (ii) the carbon layer acts as a physical barrier to suppress the lithium dendrite growth toward the solid electrolyte because of its lithiophobic nature.
科研通智能强力驱动
Strongly Powered by AbleSci AI