亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards interpretable drug interaction prediction via dual-stage attention and Bayesian calibration with active learning

贝叶斯概率 校准 机器学习 对偶(语法数字) 人工智能 计算机科学 阶段(地层学) 心理学 数学 统计 生物 文学类 艺术 古生物学
作者
Rongpei Li,Yufang Zhang,Heqi Sun,Shenggeng Lin,Guihua Jia,Yitian Fang,Chen Zhang,Xiaotong Song,Jianwei Zhao,Lyubin Hu,Yajing Yuan,Xueying Mao,Jiayi Li,Aman Chandra Kaushik,Deyue An,Dong‐Qing Wei
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:11: e2847-e2847
标识
DOI:10.7717/peerj-cs.2847
摘要

Drug-drug interactions (DDIs) account for 17-23% of adverse drug reactions leading to hospitalization, with over 74,000 DDI-related events reported in the FDA Adverse Event Reporting System (FAERS) during 2023. While recent computational methods focus on improving prediction accuracy, they suffer from high false-positive rates (>45%) and often function as black-box models without biological interpretability. We propose Dual-stage attention and Bayesian calibration with active learning Drug-Drug Interaction (DABI-DDI), a novel framework integrating: (1) A dual-stage attention mechanism with LSTM networks for capturing temporal dependencies in drug interactions, (2) a Bayesian calibration approach with beta-binomial modeling for refining interaction signals and reducing false positives, (3) an active learning strategy for efficient sample selection, and (4) a network pharmacology component linking drug interactions to underlying biological mechanisms. The model was validated using data from FAERS, DrugBank, and STRING databases, with comprehensive evaluation on both computational performance and biological interpretability. DABI-DDI achieved superior performance (AUC = 0.947, PR_AUC = 0.944). Bayesian calibration improved adverse event detection accuracy (94% vs. 54% AUC), while network pharmacology revealed key molecular mechanisms through enzyme-transporter interactions. Ablation studies demonstrated each component's significance, with active learning maintaining performance while reducing training data requirements. We present DABI-DDI, an integrated feature extraction framework that successfully addresses key challenges in DDIs prediction through three major innovations: Temporal pattern recognition, reducing false positives, and biological interpretability. Most importantly, the framework demonstrates strong clinical applicability by efficiently identifying high-risk drug combinations while providing mechanistic insights through enzyme-transporter pathway analysis. This approach bridges the gap between computational prediction and clinical understanding, offering a promising tool for safer drug combination therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适尔珍完成签到,获得积分20
8秒前
13秒前
wanci应助科研通管家采纳,获得10
13秒前
Chris完成签到 ,获得积分0
21秒前
24秒前
忧虑的羊完成签到 ,获得积分10
28秒前
32秒前
33秒前
34秒前
44秒前
苹果书文完成签到 ,获得积分10
48秒前
奇拉维特完成签到 ,获得积分10
56秒前
量子星尘发布了新的文献求助10
1分钟前
计划完成签到,获得积分10
1分钟前
1分钟前
黄菠萝发布了新的文献求助30
1分钟前
zqq完成签到,获得积分0
1分钟前
笨笨完成签到,获得积分10
1分钟前
gtgyh完成签到 ,获得积分10
1分钟前
1分钟前
友好胜完成签到 ,获得积分10
2分钟前
kingcoffee完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
九黎完成签到 ,获得积分10
2分钟前
打打应助高大的蜡烛采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
邵海完成签到,获得积分20
2分钟前
七月流火应助nikakk采纳,获得70
3分钟前
harry发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Axel完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4316442
求助须知:如何正确求助?哪些是违规求助? 3834909
关于积分的说明 11994794
捐赠科研通 3475189
什么是DOI,文献DOI怎么找? 1906109
邀请新用户注册赠送积分活动 952289
科研通“疑难数据库(出版商)”最低求助积分说明 853804