Deep learning frequency loss functions for predicting the seismic responses of structures

地质学 地震学 计算机科学
作者
Wei-Jian Tang,Dongsheng Wang,Jian-Cheng Dai,Lei Tong,Zhiguo Sun
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
标识
DOI:10.1142/s0219455425501986
摘要

Novel loss functions for seismic response prediction, such as physics-informed loss functions, have attracted considerable attention. However, existing loss functions are based on the time domain and do not consider the frequency domain differences contained in structure response signals. This study accordingly designed three loss functions based on frequency domain information — one pure frequency domain loss function and two combined frequency- and time-domain loss functions — using Fourier transforms. The proposed loss functions were applied using a trusted publicly available dataset for a frame structure, and their performances were compared with those obtained using the conventional mean squared error (MSE) loss function. The proposed frequency domain loss function exhibited superior performance, accelerating the convergence of learning curves for long-period signals while simultaneously enhancing their frequency domain accuracy and facilitating the prediction of high-sampling-rate response signals. In addition, the designed loss functions exhibited more stable performances and superior accuracy than the MSE when random dataset partitioning was employed. Finally, the combined time- and frequency-domain loss functions were shown to predict the seismic displacement time-history of tall, long-span bridges more accurately than the MSE by training the model to predict structural acceleration responses, then integrating them to predict displacement responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助冷山采纳,获得10
1秒前
lewis_xl完成签到,获得积分10
1秒前
LM发布了新的文献求助10
2秒前
伏线发布了新的文献求助10
3秒前
tfq200发布了新的文献求助10
4秒前
xuehuali发布了新的文献求助10
5秒前
9秒前
Rita发布了新的文献求助10
10秒前
大个应助傢誠采纳,获得10
11秒前
11秒前
心肌细胞完成签到,获得积分10
13秒前
13秒前
xuehuali完成签到,获得积分20
14秒前
默默完成签到 ,获得积分10
14秒前
14秒前
哈哈发布了新的文献求助10
15秒前
科研通AI5应助自由山槐采纳,获得30
15秒前
心肌细胞发布了新的文献求助10
18秒前
18秒前
zhangpeng发布了新的文献求助10
19秒前
20秒前
C.Z.Young应助追寻的问玉采纳,获得10
20秒前
傢誠发布了新的文献求助10
22秒前
23秒前
小蘑菇应助春瞳采纳,获得10
25秒前
feng发布了新的文献求助10
25秒前
hl发布了新的文献求助10
26秒前
伏线完成签到 ,获得积分10
26秒前
Aileen完成签到,获得积分10
27秒前
共享精神应助吴若魔采纳,获得10
28秒前
桐桐应助NingZH采纳,获得10
29秒前
小房子完成签到,获得积分10
30秒前
与yu完成签到,获得积分20
30秒前
活泼的之槐完成签到,获得积分10
31秒前
失眠夜玉完成签到,获得积分10
32秒前
33秒前
书剑飞侠完成签到,获得积分10
34秒前
杜若完成签到 ,获得积分10
34秒前
杰king完成签到 ,获得积分20
35秒前
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814439
求助须知:如何正确求助?哪些是违规求助? 3358522
关于积分的说明 10395901
捐赠科研通 3075750
什么是DOI,文献DOI怎么找? 1689542
邀请新用户注册赠送积分活动 813027
科研通“疑难数据库(出版商)”最低求助积分说明 767439