A Novel Predictive Machine Learning Model Integrating Cytokines in Cervical-Vaginal Mucus Increases the Prediction Rate for Preterm Birth

医学 宫颈粘液 产科 金标准(测试) 细胞因子 假阳性率 心理干预 子宫颈 内科学 人工智能 计算机科学 癌症 精神科
作者
Hector Borboa‐Olivares,M.J. Rodriguez‐Sibaja,Aurora Espejel-Núñez,Arturo Flores‐Pliego,Jonatan Mendoza-Ortega,Ignacio Camacho‐Arroyo,R. González-Camarena,Juan Carlos Echeverría-Arjonilla,Guadalupe Estrada‐Gutiérrez
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:24 (18): 13851-13851 被引量:3
标识
DOI:10.3390/ijms241813851
摘要

Preterm birth (PB) is a leading cause of perinatal morbidity and mortality. PB prediction is performed by measuring cervical length, with a detection rate of around 70%. Although it is known that a cytokine-mediated inflammatory process is involved in the pathophysiology of PB, none screening method implemented in clinical practice includes cytokine levels as a predictor variable. Here, we quantified cytokines in cervical-vaginal mucus of pregnant women (18-23.6 weeks of gestation) with high or low risk for PB determined by cervical length, also collecting relevant obstetric information. IL-2, IL-6, IFN-γ, IL-4, and IL-10 were significantly higher in the high-risk group, while IL-1ra was lower. Two different models for PB prediction were created using the Random Forest machine-learning algorithm: a full model with 12 clinical variables and cytokine values and the adjusted model, including the most relevant variables-maternal age, IL-2, and cervical length- (detection rate 66 vs. 87%, false positive rate 12 vs. 3.33%, false negative rate 28 vs. 6.66%, and area under the curve 0.722 vs. 0.875, respectively). The adjusted model that incorporate cytokines showed a detection rate eight points higher than the gold standard calculator, which may allow us to identify the risk PB risk more accurately and implement strategies for preventive interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Mary采纳,获得10
刚刚
难两全发布了新的文献求助10
1秒前
koitoyu完成签到,获得积分10
1秒前
1秒前
Gg完成签到,获得积分10
1秒前
然12138发布了新的文献求助10
2秒前
2秒前
领导范儿应助无人喝彩采纳,获得10
2秒前
芯止谭轩完成签到,获得积分10
2秒前
3秒前
小比熊完成签到,获得积分10
4秒前
Owen应助结实的帆布鞋采纳,获得10
4秒前
doctor杨发布了新的文献求助10
5秒前
科研通AI5应助鞠志花采纳,获得30
6秒前
6秒前
ZZZ333完成签到,获得积分10
6秒前
领导范儿应助木南采纳,获得30
6秒前
英姑应助冰阔罗采纳,获得10
7秒前
nayuta关注了科研通微信公众号
7秒前
南暮完成签到,获得积分10
8秒前
靖秋完成签到 ,获得积分10
8秒前
天天快乐应助活泼莫英采纳,获得10
9秒前
尹冰露发布了新的文献求助10
9秒前
善良曲奇发布了新的文献求助10
9秒前
11完成签到 ,获得积分10
10秒前
加油吧弟弟完成签到,获得积分10
10秒前
汉堡包应助doctor杨采纳,获得10
10秒前
11秒前
无聊的剑完成签到,获得积分10
12秒前
12秒前
小羊zhou完成签到,获得积分10
12秒前
昆明官渡酒店完成签到,获得积分20
13秒前
ice贝完成签到,获得积分10
13秒前
14秒前
14秒前
善良曲奇完成签到,获得积分10
15秒前
稳重以珊完成签到,获得积分10
15秒前
满意的盼柳完成签到,获得积分10
15秒前
15秒前
安详凡完成签到 ,获得积分10
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835634
求助须知:如何正确求助?哪些是违规求助? 3378015
关于积分的说明 10501548
捐赠科研通 3097632
什么是DOI,文献DOI怎么找? 1705876
邀请新用户注册赠送积分活动 820756
科研通“疑难数据库(出版商)”最低求助积分说明 772245