计算机科学
脑-机接口
人工智能
校准
模式识别(心理学)
水准点(测量)
独立成分分析
利用
线性判别分析
机器学习
脑电图
统计
数学
精神科
计算机安全
心理学
地理
大地测量学
作者
Ruixin Luo,Xiaolin Xiao,Enze Chen,Lin Meng,Tzyy‐Ping Jung,Minpeng Xu,Dong Ming
标识
DOI:10.1088/1741-2552/ad0b8f
摘要
. Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) is a promising technology that can achieve high information transfer rate (ITR) with supervised algorithms such as ensemble task-related component analysis (eTRCA) and task-discriminant component analysis (TDCA). However, training individual models requires a tedious and time-consuming calibration process, which hinders the real-life use of SSVEP-BCIs. A recent data augmentation method, called source aliasing matrix estimation (SAME), can generate new EEG samples from a few calibration trials. But SAME does not exploit the information across stimuli as well as only reduces the number of calibration trials per command, so it still has some limitations.
科研通智能强力驱动
Strongly Powered by AbleSci AI