Predicting compressive strength of concrete with fly ash, metakaolin and silica fume by using machine learning techniques

偏高岭土 硅粉 粉煤灰 胶凝的 抗压强度 水泥 线性回归 回归分析 材料科学 计算机科学 机器学习 复合材料
作者
Ali Al-Saraireh Majd
出处
期刊:Latin American Journal of Solids and Structures [SciELO]
卷期号:19 (5) 被引量:6
标识
DOI:10.1590/1679-78257022
摘要

The compressive strength (CS) is the most important parameter in the design codes of reinforced concrete structures. The development of simple mathematical equations for the prediction of CS of concrete can have many practical advantages such as it save cost and time in experiments needed for suitable design data. Due to environmental concerns with the production of cement, different supplementary cementitious materials are often used as partial replacements for cement such as fly ash (FA), metakaolin (MK), and silica fume (SF). However, little work has been done for developing simple mathematical equations for the prediction of CS with FA, MK and SF by using the M5P algorithm. Moreover, the M5P algorithm is not compared with other modelling techniques such as linear regression analysis, gene expression programming (GEP) and response surface methodology. It is established that, for concrete with FA and SF, M5P showed superior prediction capability as compared with other modelling techniques, however, GEP gave the best performance for concrete with MK: CS decrease by increasing FA content, while it increases by increasing MK and SF content.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
厚朴应助stars采纳,获得50
2秒前
2秒前
4秒前
科研通AI6应助Jodie采纳,获得10
4秒前
charon完成签到,获得积分10
6秒前
科研通AI6应助典雅的俊驰采纳,获得10
7秒前
沉静鸿煊完成签到,获得积分10
13秒前
ymj完成签到,获得积分10
15秒前
16秒前
17秒前
辉哥完成签到,获得积分10
18秒前
fang完成签到 ,获得积分10
18秒前
19秒前
小巧的蓝血完成签到,获得积分20
23秒前
牛马哥完成签到,获得积分10
25秒前
29秒前
FashionBoy应助Aron采纳,获得10
33秒前
33秒前
Andone完成签到,获得积分10
34秒前
pinging完成签到,获得积分10
36秒前
甜美修洁发布了新的文献求助50
36秒前
inter完成签到,获得积分10
37秒前
李爱国应助动听的涵山采纳,获得10
38秒前
沐沐1003完成签到,获得积分10
41秒前
taikoyu完成签到 ,获得积分10
41秒前
领导范儿应助1762120采纳,获得10
42秒前
42秒前
44秒前
45秒前
Aron发布了新的文献求助10
49秒前
我是老大应助galaxy采纳,获得10
50秒前
50秒前
FOODHUA完成签到,获得积分10
52秒前
KAZEN完成签到 ,获得积分10
52秒前
54秒前
llc完成签到 ,获得积分10
58秒前
Aron完成签到,获得积分10
59秒前
Jodie发布了新的文献求助10
59秒前
galaxy发布了新的文献求助10
59秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557705
求助须知:如何正确求助?哪些是违规求助? 4642797
关于积分的说明 14669110
捐赠科研通 4584209
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459550