DeepADNet: A CNN‐LSTM model for the multi‐class classification of Alzheimer’s disease using multichannel EEG

脑电图 人工智能 模式识别(心理学) 卷积神经网络 计算机科学 听力学 医学 心理学 神经科学
作者
Thi Kieu Khanh Ho,Younghoon Jeon,Eunchan Na,Zahid Ullah,Byeong C. Kim,Kun Ho Lee,Jong‐In Song,Jeonghwan Gwak
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:17 (S7) 被引量:9
标识
DOI:10.1002/alz.057573
摘要

Early and accurate diagnosis of Alzheimer's disease (AD) - an incurable and progressive brain disorder, along with a sharp upward trend in the incidence rate, is significantly important for patients to take prevention and appropriate treatments. However, the pathophysiological mechanism at the levels of AD severity is still poorly understood in spite of the worldwide financial and research efforts. Using an inexpensive and noninvasive modality, such as Electroencephalography (EEG) coupled with Deep Learning (DL)-derived diagnostic tool to retain the accuracy and versatility, therefore, has gained much attention in AD multi-class classification.The present study proposes DL model, named DeepADNet, for the AD multi-class classification using multichannel EEG. First, we extracted the event-related spectral perturbation (ERSP) features measuring the average dynamic changes in amplitude of three main EEG frequency bands relative to a specific experimental event. Second, the hybrid deep Convolutional Neural Network (CNN) - Long Short-Term Memory Network (LSTM) was built to exploit the wide range of ERSP patterns on a time-frequency domain and to generate discriminant features to classify healthy controls (HC) with two AD subject groups. To tackle the imbalance problem and improve the classification accuracy, we also applied different over-sampling techniques RESULTS: The EEG data were collected from the Oddball - a cognitive ability test with 63 subjects (23 HC, 17 Pre-symptomatic AD (aAD) and 23 Prodromal AD (pAD) subjects) and the N-back - a memory ability test with 36 subjects (13 HC, 11 aAD and 12 pAD subjects). We demonstrated that the ERSP patterns displayed significant differences among three subject groups during the two experimental stages. Classification results also reveal that a CNN-LSTM model could overcome the existing methods utilizing the hand-engineered features which demand on prior knowledge of AD analysis and achieved the highest accuracy during the Oddball (71.95% ± 0.019 and 75.95% ± 0.017) and during the N-back (69.40% ± 0.003 and 73.70% ± 0.010) corresponding to original and SVMSMOTE-based ERSP features.These findings demonstrate the capability of the EEG systems to better underlie the AD progression through spatiotemporal-dynamic regions in the brain and the potential of DL-based models for further AD classification studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
徐笑松完成签到 ,获得积分10
刚刚
ZhouQixing发布了新的文献求助10
1秒前
1秒前
溜溜发布了新的文献求助10
1秒前
lzl17o8完成签到,获得积分20
1秒前
jingchengke完成签到,获得积分10
2秒前
冬瓜完成签到,获得积分20
3秒前
3秒前
4秒前
luo发布了新的文献求助10
5秒前
感性的念芹完成签到,获得积分10
5秒前
kais完成签到 ,获得积分0
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
望春风发布了新的文献求助10
6秒前
lzl17o8发布了新的文献求助10
6秒前
霜叶完成签到 ,获得积分10
6秒前
6秒前
自闭中完成签到,获得积分10
7秒前
爆米花应助王逗逗采纳,获得10
7秒前
讨厌下雨天完成签到 ,获得积分10
7秒前
Rubby完成签到,获得积分0
8秒前
anan完成签到 ,获得积分10
8秒前
大强完成签到,获得积分10
9秒前
慕雪完成签到,获得积分10
9秒前
9秒前
Doctor发布了新的文献求助10
9秒前
我就是我完成签到,获得积分10
9秒前
今后应助Belle采纳,获得10
9秒前
luckysame发布了新的文献求助10
9秒前
可爱的函函应助冬瓜采纳,获得10
10秒前
青阳完成签到,获得积分10
10秒前
格物完成签到,获得积分10
11秒前
颖帅完成签到,获得积分10
11秒前
11秒前
xiaosun完成签到,获得积分10
12秒前
强健的冰棍完成签到,获得积分10
12秒前
Zhang发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067126
求助须知:如何正确求助?哪些是违规求助? 4288967
关于积分的说明 13361468
捐赠科研通 4108496
什么是DOI,文献DOI怎么找? 2249751
邀请新用户注册赠送积分活动 1255144
关于科研通互助平台的介绍 1187650