Metal organic framework derived In2O3/ZrO2 heterojunctions with interfacial oxygen vacancies for highly selective CO2-to-methanol hydrogenation

异质结 甲醇 氧气 金属有机骨架 金属 材料科学 化学工程 光化学 化学 有机化学 光电子学 吸附 工程类 冶金
作者
Paramita Koley,Subhash Chandra Shit,Takefumi Yoshida,Deshetti Jampaiah,Hiroko Ariga-Miwa,Tomoya Uruga,Jyotishman Kaishyop,Tayebeh Hosseinnejad,Selvakannan Periasamy,Ravindra D. Gudi,Dharmendra D. Mandaliya,Yasuhiro Iwasawa,Suresh K. Bhargava
出处
期刊:Nature Communications [Springer Nature]
卷期号:16 (1): 8903-8903
标识
DOI:10.1038/s41467-025-63932-y
摘要

The hydrogenation of CO2 to methanol is a promising route for carbon capture and utilization, however achieving high selectivity and productivity remains a challenge. This study presents a novel catalyst synthesized by pyrolyzing a zirconium-based metal-organic framework impregnated with indium, yielding ultrafine In2O3 nanoparticles uniformly embedded within a ZrO2 and carbon matrix. The resulting In2O3/ZrO2 heterojunction exhibited abundant oxygen vacancies at the interface, which is crucial for enhancing the catalytic performance. Under gas-phase conditions, the catalyst achieves an exceptional methanol selectivity of 81% with a record-high productivity of 2.64 gMeOH·gcat⁻¹·h⁻¹ at mild reaction conditions, while in liquid-phase hydrogenation, methanol selectivity reaches 96%. Comprehensive structural characterizations confirmed that oxygen vacancies and the heterointerface served as active sites, facilitating CO2 activation and methanol stabilization. Mechanistic insights from in-situ DRIFTS and ATR-IR spectroscopy revealed that methanol formation proceeds via the formate pathway, further supported by in-situ ambient-pressure X-ray photoelectron spectroscopy, demonstrating electronic structural modulation and an increased concentration of oxygen vacancies. These findings underscore the critical role of defect engineering in optimizing CO2 hydrogenation catalysts and provide a pathway for designing highly efficient systems for sustainable methanol production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小徐完成签到,获得积分10
刚刚
落叶无声完成签到 ,获得积分10
1秒前
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
liu完成签到,获得积分10
4秒前
飞天猫完成签到,获得积分10
6秒前
13633501455完成签到 ,获得积分10
6秒前
顺利毕业发布了新的文献求助10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
蓝胖胖完成签到 ,获得积分10
7秒前
ding应助科研通管家采纳,获得10
7秒前
美丽谷槐发布了新的文献求助30
7秒前
liao应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
嘿嘿应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
liao应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457360
求助须知:如何正确求助?哪些是违规求助? 4563864
关于积分的说明 14291813
捐赠科研通 4488514
什么是DOI,文献DOI怎么找? 2458558
邀请新用户注册赠送积分活动 1448595
关于科研通互助平台的介绍 1424229