肾透明细胞癌
癌症研究
下调和上调
细胞生长
荧光素酶
长非编码RNA
小RNA
细胞
化学
分子生物学
生物
细胞培养
病理
医学
肾细胞癌
基因
转染
生物化学
遗传学
作者
Chengquan Yan,Pengfei Wang,Chaofei Zhao,Guangwei Yin,Xin Meng,Lin Li,Shengyong Cai,Bin Meng
标识
DOI:10.1615/critreveukaryotgeneexpr.2023048338
摘要
The objective of this study was to determine the regulatory mechanism of MAGI2-AS3 in clear cell renal cell carcinoma (ccRCC), thereby supplying a new insight for ccRCC treatment. Expression data in TCGA-KIRC were obtained. Target gene lncRNA for research was determined using expression analysis and clinical analysis. lncRNA's downstream regulatory miRNA and mRNA were predicted by bioinformatics databases. ccRCC cell malignant phenotypes were detected via CCK-8, colony formation, Transwell migration, and invasion assays. The targeting relationship between genes was assessed through dual-luciferase reporter gene analysis. Kaplan-Meier (K-M) analysis was carried out to verify the effect of MAGI2-AS3, miR-629-5p, and PRDM16 on the survival rate of ccRCC patients. MAGI2-AS3 expression in ccRCC tissue and cells was shown to be markedly decreased and its expression to continuously decline with tumor progression. MAGI2-AS3 suppresses ccRCC proliferation and migration. Dual-luciferase assay showed that MAGI2-AS3 binds miR-629-5p and that miR-629-5p binds PRDM16. In addition, functional experiments showed that MAGI2-AS3 facilitates PRDM16 expression by repressing miR-629-5p expression, thereby suppressing ccRCC cell aggression. K-M analysis showed that upregulation of either MAGI2-AS3 or PRDM16 significantly improves ccRCC patient survival, while upregulation of miR-629-5p has no significant impact. MAGI2-AS3 sponges miR-629-5p to modulate PRDM16 to mediate ccRCC development. Meanwhile, the MAGI2-AS3/miR-629-5p/PRDM16 axis, as a regulatory pathway of ccRCC progression, may be a possible therapeutic target and prognostic indicator of ccRCC.
科研通智能强力驱动
Strongly Powered by AbleSci AI