TITE‐gBOIN‐ET: Time‐to‐event generalized Bayesian optimal interval design to accelerate dose‐finding accounting for ordinal graded efficacy and toxicity outcomes

事件(粒子物理) 医学 区间(图论) 置信区间 贝叶斯概率 序数数据 计量经济学 统计 数学 组合数学 物理 量子力学
作者
Kentaro Takeda,Yusuke Yamaguchi,Masataka Taguri,Satoshi Morita
出处
期刊:Biometrical Journal [Wiley]
卷期号:65 (7): e2200265-e2200265 被引量:13
标识
DOI:10.1002/bimj.202200265
摘要

Abstract One of the primary objectives of an oncology dose‐finding trial for novel therapies, such as molecular‐targeted agents and immune‐oncology therapies, is to identify an optimal dose (OD) that is tolerable and therapeutically beneficial for subjects in subsequent clinical trials. These new therapeutic agents appear more likely to induce multiple low or moderate‐grade toxicities than dose‐limiting toxicities. Besides, for efficacy, evaluating the overall response and long‐term stable disease in solid tumors and considering the difference between complete remission and partial remission in lymphoma are preferable. It is also essential to accelerate early‐stage trials to shorten the entire period of drug development. However, it is often challenging to make real‐time adaptive decisions due to late‐onset outcomes, fast accrual rates, and differences in outcome evaluation periods for efficacy and toxicity. To solve the issues, we propose a time‐to‐event generalized Bayesian optimal interval design to accelerate dose finding, accounting for efficacy and toxicity grades. The new design named “TITE‐gBOIN‐ET” design is model‐assisted and straightforward to implement in actual oncology dose‐finding trials. Simulation studies show that the TITE‐gBOIN‐ET design significantly shortens the trial duration compared with the designs without sequential enrollment while having comparable or higher performance in the percentage of correct OD selection and the average number of patients allocated to the ODs across various realistic settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
quhayley应助宣登仕采纳,获得10
刚刚
斯文败类应助阮楷瑞采纳,获得10
刚刚
孙佳豪发布了新的文献求助10
1秒前
ray发布了新的文献求助30
1秒前
Hello应助明理的诗槐采纳,获得10
2秒前
yl发布了新的文献求助10
2秒前
kkkkkkkkkkk完成签到,获得积分10
2秒前
蒲公英发布了新的文献求助10
2秒前
2秒前
anser001发布了新的文献求助10
2秒前
蔡毛线完成签到 ,获得积分10
2秒前
3秒前
王泳茵完成签到,获得积分10
3秒前
3秒前
Jasper应助超级的觅夏采纳,获得10
3秒前
3秒前
3秒前
3秒前
jogrgr发布了新的文献求助30
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
柏不斜发布了新的文献求助200
4秒前
顾矜应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
WAMK发布了新的文献求助50
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
hhhg应助科研通管家采纳,获得10
5秒前
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得30
5秒前
Clarence完成签到,获得积分20
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
王开阔完成签到,获得积分10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
Aerospace Standards Index - 2025 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5441179
求助须知:如何正确求助?哪些是违规求助? 4552035
关于积分的说明 14233318
捐赠科研通 4473012
什么是DOI,文献DOI怎么找? 2451153
邀请新用户注册赠送积分活动 1442102
关于科研通互助平台的介绍 1418298