Early-emerging combinatorial thought: Human infants flexibly combine kind and quantity concepts

集合(抽象数据类型) 认知 计算机科学 认知科学 短语 先决条件 认知心理学 心理学 人工智能 程序设计语言 神经科学
作者
Barbara Pomiechowska,Gábor Bródy,Ernő Téglás,Ágnes Melinda Kovács
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (29) 被引量:1
标识
DOI:10.1073/pnas.2315149121
摘要

Combinatorial thought, or the ability to combine a finite set of concepts into a myriad of complex ideas and knowledge structures, is the key to the productivity of the human mind and underlies communication, science, technology, and art. Despite the importance of combinatorial thought for human cognition and culture, its developmental origins remain unknown. To address this, we tested whether 12-mo-old infants ( N = 60), who cannot yet speak and only understand a handful of words, can combine quantity and kind concepts activated by verbal input. We proceeded in two steps: first, we taught infants two novel labels denoting quantity (e.g., “mize” for 1 item; “padu” for 2 items, Experiment 1). Then, we assessed whether they could combine quantity and kind concepts upon hearing complex expressions comprising their labels (e.g., “ padu duck”, Experiments 2-3). At test, infants viewed four different sets of objects (e.g., 1 duck, 2 ducks, 1 ball, 2 balls) while being presented with the target phrase (e.g., “padu duck”) naming one of them (e.g., 2 ducks). They successfully retrieved and combined on-line the labeled concepts, as evidenced by increased looking to the named sets but not to distractor sets. Our results suggest that combinatorial processes for building complex representations are available by the end of the first year of life. The infant mind seems geared to integrate concepts in novel productive ways. This ability may be a precondition for deciphering the ambient language(s) and building abstract models of experience that enable fast and flexible learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
春山景发布了新的文献求助10
1秒前
科研通AI2S应助小小蜉蝣采纳,获得10
1秒前
归尘发布了新的文献求助10
2秒前
辞镜发布了新的文献求助10
2秒前
00完成签到 ,获得积分10
3秒前
华仔应助董竹君采纳,获得10
3秒前
4秒前
子明完成签到 ,获得积分0
5秒前
可爱的函函应助lin采纳,获得10
5秒前
ruomu发布了新的文献求助30
5秒前
7秒前
7秒前
飘逸的麦片完成签到,获得积分10
10秒前
小蘑菇应助lilili采纳,获得10
12秒前
结实小夏发布了新的文献求助30
12秒前
辞镜完成签到,获得积分10
13秒前
16秒前
小马甲应助辞镜采纳,获得10
16秒前
17秒前
安仔完成签到,获得积分10
17秒前
17秒前
慕青应助科研通管家采纳,获得10
20秒前
TUTU应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
烟花应助科研通管家采纳,获得10
20秒前
小青完成签到,获得积分10
20秒前
星辰大海应助科研通管家采纳,获得10
21秒前
勤奋紫真发布了新的文献求助10
21秒前
ruomu发布了新的文献求助30
22秒前
锅包肉完成签到 ,获得积分10
22秒前
西大喜完成签到,获得积分10
22秒前
大个应助科研通管家采纳,获得10
23秒前
24秒前
大陆完成签到,获得积分10
25秒前
princeyxx完成签到,获得积分10
25秒前
26秒前
orixero应助科研通管家采纳,获得10
26秒前
mumu发布了新的文献求助10
27秒前
明理的踏歌完成签到,获得积分10
27秒前
27秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Risks and Security of Internet and Systems CRiSIS 2024 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828020
求助须知:如何正确求助?哪些是违规求助? 3370296
关于积分的说明 10462695
捐赠科研通 3090268
什么是DOI,文献DOI怎么找? 1700293
邀请新用户注册赠送积分活动 817810
科研通“疑难数据库(出版商)”最低求助积分说明 770442