FT-NIR Spectra of Different Dimensions Combined with Machine Learning and Image Recognition for Origin Identification: An Example of Panax notoginseng

三七 鉴定(生物学) 模式识别(心理学) 人工智能 图像(数学) 计算机科学 化学 生物 植物 医学 替代医学 病理
作者
Zhi‐Tian Zuo,Yuanzhong Wang,Zeng-Yu Yao
出处
期刊:ACS omega [American Chemical Society]
卷期号:10 (7): 7242-7255
标识
DOI:10.1021/acsomega.4c10816
摘要

Panax notoginseng (P. notoginseng) is a traditional medicinal plant with high medicinal and economic values. The authenticity of P. notoginseng often determines its quality, and the quality of geographical indication (GI)-producing areas is usually superior to that of other producing areas, which are exploited by unscrupulous traders and affect the market order. The aim of this study was to characterize and identify the geographic origin of P. notoginseng using Fourier transform near-infrared (FT-NIR) spectroscopy, with rapid detection combined with multivariate analysis. The use of principal component analysis and correlation spectral analysis enabled the initial differential characterization and identification of P. notoginseng from different production areas. Then, random forest (RF) and support vector machine (SVM) models were established, and the results show that the results showed that the second-order derivative preprocessing and successive projection algorithm feature extraction achieved 100% classification correctness and the model training time is the shortest. Further constructing the image recognition model, synchronous two-dimensional correlation spectroscopy (2DCOS) image combined with residual convolutional neural network achieved accurate classification (accuracy of 100%) and did not require complex preprocessing and artificial feature extraction process, to maximize the avoidance of errors caused by human factors. The recognition results of the externally validated set showed that the image recognition method has a strong generalization ability and has a high potential for application in the identification of P. notoginseng production areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熊子文完成签到 ,获得积分10
1秒前
希望天下0贩的0应助BUG采纳,获得10
1秒前
2秒前
SHL发布了新的文献求助30
2秒前
在水一方应助qiaorankongling采纳,获得10
2秒前
kkk完成签到,获得积分10
3秒前
风清扬发布了新的文献求助10
3秒前
华仔应助Shuang采纳,获得10
4秒前
wy.he应助yyy采纳,获得10
4秒前
大锤发布了新的文献求助10
4秒前
4秒前
大个应助科研通管家采纳,获得10
5秒前
11应助科研通管家采纳,获得10
5秒前
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
Yosemite应助科研通管家采纳,获得10
5秒前
5秒前
搞怪网络应助科研通管家采纳,获得10
5秒前
lorieeee应助科研通管家采纳,获得20
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
彭于彦祖应助科研通管家采纳,获得20
5秒前
领导范儿应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
英姑应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
6秒前
研友_nxGOmL发布了新的文献求助10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
SYLH应助雪原白鹿采纳,获得10
7秒前
10秒前
111完成签到,获得积分10
10秒前
11秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902656
求助须知:如何正确求助?哪些是违规求助? 3447386
关于积分的说明 10849014
捐赠科研通 3172725
什么是DOI,文献DOI怎么找? 1753080
邀请新用户注册赠送积分活动 847544
科研通“疑难数据库(出版商)”最低求助积分说明 790067