Resilient Machine Learning Based Semantic-Aware MEC Networks for Sustainable Next-G Consumer Electronics

计算机科学 数码产品 能源消耗 分布式计算 高效能源利用 人工智能 工程类 电气工程
作者
Yuxin Wu,Shunpu Tang,Lianhong Zhang,Lisheng Fan,Xianfu Lei,Xiang Chen
出处
期刊:IEEE Transactions on Consumer Electronics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:4
标识
DOI:10.1109/tce.2023.3338819
摘要

In this paper, we investigate a semantic-aware mobile edge computing (MEC) network for sustainable next-G consumer electronics, which leverages advanced semantic communication technology to overcome the limitations of available bandwidth and thereby improve communication efficiency. For this network, consumer electronic devices can offload the semantic information extracted from the task instead of transmitting the whole task in the conventional MEC networks, where the latency and energy consumption can be significantly reduced through proper semantic encoding, offloading, and bandwidth and computation allocation decisions. However, the non-convexity of the issue makes it difficult to obtain the optimal decision. To address this issue, a two-level optimization framework is proposed. Specifically, in the upper-level optimization, a resilient deep reinforcement learning (DRL) approach is utilized to enable adaptive offloading and semantic encoding decisions within a dynamic network. In the lower-level optimization, we design three criteria for allocating bandwidth and computation resources by carefully considering the trade-off between computational complexity and implementation efficiency. Finally, extensive simulations are conducted to validate the effectiveness of our proposed strategy. The findings in this paper can help reduce the energy consumption of consumer electronics, hence supporting the development of sustainable next-G consumer electronics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不远发布了新的文献求助10
刚刚
搜集达人应助白糖采纳,获得10
1秒前
2秒前
2秒前
SciGPT应助坚定书竹采纳,获得10
2秒前
科研通AI5应助微笑子慧采纳,获得10
2秒前
2秒前
2秒前
叶叶叶发布了新的文献求助10
2秒前
3秒前
笨笨发布了新的文献求助10
4秒前
4秒前
熊威发布了新的文献求助10
5秒前
Ly啦啦啦完成签到,获得积分10
6秒前
xxnn发布了新的文献求助30
7秒前
7秒前
Anonymous发布了新的文献求助10
8秒前
科研通AI5应助Vega采纳,获得10
8秒前
wwww发布了新的文献求助10
8秒前
喵喵发布了新的文献求助10
8秒前
sundial发布了新的文献求助10
9秒前
hs发布了新的文献求助10
9秒前
月亮弯弯啊完成签到,获得积分20
11秒前
11秒前
11秒前
11秒前
cdercder应助恰逢采纳,获得20
12秒前
max完成签到,获得积分10
12秒前
zhzssaijj发布了新的文献求助10
14秒前
香蕉书竹发布了新的文献求助10
14秒前
桐桐应助崔洪瑞采纳,获得10
14秒前
李爱国应助Ly啦啦啦采纳,获得10
16秒前
科研通AI5应助白巧小丸子采纳,获得10
16秒前
16秒前
666发布了新的文献求助10
17秒前
丘比特应助冷酷的红酒采纳,获得30
18秒前
18秒前
开心小咕噜发布了新的文献求助200
19秒前
20秒前
lalafish完成签到,获得积分10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794866
求助须知:如何正确求助?哪些是违规求助? 3339745
关于积分的说明 10297072
捐赠科研通 3056404
什么是DOI,文献DOI怎么找? 1676972
邀请新用户注册赠送积分活动 804994
科研通“疑难数据库(出版商)”最低求助积分说明 762286