Integrated analysis of single-cell RNA-seq and chipset data unravels PANoptosis-related genes in sepsis

计算生物学 基因 败血症 生物 聚类分析 生物信息学 免疫学 遗传学 计算机科学 机器学习
作者
Wei Dai,Ping Zheng,Jian Wu,Siqi Chen,Mingtao Deng,Xiangqian Tong,Fen Liu,Xiuling Shang,Kejian Qian
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:14 被引量:19
标识
DOI:10.3389/fimmu.2023.1247131
摘要

Background The poor prognosis of sepsis warrants the investigation of biomarkers for predicting the outcome. Several studies have indicated that PANoptosis exerts a critical role in tumor initiation and development. Nevertheless, the role of PANoptosis in sepsis has not been fully elucidated. Methods We obtained Sepsis samples and scRNA-seq data from the GEO database. PANoptosis-related genes were subjected to consensus clustering and functional enrichment analysis, followed by identification of differentially expressed genes and calculation of the PANoptosis score. A PANoptosis-based prognostic model was developed. In vitro experiments were performed to verify distinct PANoptosis-related genes. An external scRNA-seq dataset was used to verify cellular localization. Results Unsupervised clustering analysis using 16 PANoptosis-related genes identified three subtypes of sepsis. Kaplan-Meier analysis showed significant differences in patient survival among the subtypes, with different immune infiltration levels. Differential analysis of the subtypes identified 48 DEGs. Boruta algorithm PCA analysis identified 16 DEGs as PANoptosis-related signature genes. We developed PANscore based on these signature genes, which can distinguish different PANoptosis and clinical characteristics and may serve as a potential biomarker. Single-cell sequencing analysis identified six cell types, with high PANscore clustering relatively in B cells, and low PANscore in CD16+ and CD14+ monocytes and Megakaryocyte progenitors. ZBP1, XAF1, IFI44L, SOCS1, and PARP14 were relatively higher in cells with high PANscore. Conclusion We developed a machine learning based Boruta algorithm for profiling PANoptosis related subgroups with in predicting survival and clinical features in the sepsis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
京昭完成签到,获得积分10
刚刚
张张洼发布了新的文献求助10
1秒前
怪味薯片完成签到,获得积分10
1秒前
活泼的焱发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
吴垚发布了新的文献求助10
2秒前
3秒前
3秒前
大力三问完成签到,获得积分10
3秒前
Hysen_L完成签到,获得积分10
5秒前
周em12_完成签到,获得积分10
5秒前
彭于晏应助LJ采纳,获得30
5秒前
Halo完成签到,获得积分10
6秒前
酷波er应助哎咦随风起采纳,获得10
7秒前
李健的小迷弟应助邓111111采纳,获得10
7秒前
zyx发布了新的文献求助10
7秒前
8秒前
9秒前
aging00完成签到,获得积分20
9秒前
不愿完成签到,获得积分20
9秒前
10秒前
11秒前
zzzhao完成签到,获得积分10
13秒前
Yvaine完成签到,获得积分10
13秒前
13秒前
夜小娘发布了新的文献求助50
13秒前
14秒前
mojito应助酷酷采纳,获得10
14秒前
14秒前
科研通AI6应助吴垚采纳,获得10
14秒前
shinnosuke应助fghj采纳,获得10
14秒前
CDI和LIB完成签到,获得积分10
15秒前
汉堡包应助沐兮采纳,获得10
15秒前
5566完成签到,获得积分10
16秒前
gongweiliu完成签到 ,获得积分10
16秒前
16秒前
lxp发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5361218
求助须知:如何正确求助?哪些是违规求助? 4491557
关于积分的说明 13982932
捐赠科研通 4394291
什么是DOI,文献DOI怎么找? 2413865
邀请新用户注册赠送积分活动 1406725
关于科研通互助平台的介绍 1381258