已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Potential of near infrared spectroscopy and pattern recognition for rapid discrimination and quantification of Gleditsia sinensis thorn powder with adulterants

模式识别(心理学) 规范化(社会学) 人工智能 化学 平滑的 支持向量机 偏最小二乘回归 相关系数 二阶导数 数学 生物系统 统计 计算机科学 数学分析 生物 社会学 人类学
作者
Lijun Wang,Hui Yin,Kun Jiang,Guo Yin,Jue Wang,Yan Yan,Li Wang,Jing Li,Ping Wang,BI Kai-shun,Tiejie Wang
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier BV]
卷期号:160: 64-72 被引量:23
标识
DOI:10.1016/j.jpba.2018.07.036
摘要

The Gleditsia sinensis Lam thorn (GST) is a classical traditional Chinese medical herb, which is of high medical and economic value. GST could be easily adulterated with branch of Rosa multiflora thunb (BRM) and Rosa rugosa thumb (BRR), because of their similar appearances and much lower cost for these adulterants. In this study Fourier transform near-infrared spectroscopy (FT-NIR) combined with chemical pattern recognition techniques was explored for the first time to discriminate and quantify of cheaper materials (BRM and BRR) in GST. The Savitzkye-Golay (SG) smoothing, vector normalization (VN), min max normalization (MMN), first derivative (1 st D) and second derivative (2nd D) methods were used to pre-process the raw FT-NIR spectra. Successive projections algorithm was adopted to select the characteristic variables and linear discriminate analysis (LDA), support vector machine (SVM), as while as back propagation neural network (BPNN) algorithms were applied to construct the identification models. Results showed that BPNN models performance best compared with LDA and SVM models for it could reach 100% accuracy for identifying authentic GST, and GST adulterated with BRM and BRR based on the spectral region of 6500-5500 cm-1 combined with 1 st D pre-processing. In addition, the BRM and BRR content in adulterated GST were determined by partial least squares (PLS) regression. The correlation coefficient of prediction (rp), root mean square error of prediction (RMSEP) and bias for the prediction by PLS regression model were 0.9972, 1.969% and 0.3198 for BRM, 0.9972, 1.879% and 0.05408 for BRR, respectively. These results suggest that the combination of NIR spectroscopy and chemometric methods offers a simple, fast and reliable method for classification and quantification in the quality control of the tradition Chinese medicine herb of GST.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Robigo发布了新的文献求助10
刚刚
哇咔咔完成签到 ,获得积分10
2秒前
Owen应助啦啦啦啦采纳,获得10
2秒前
5秒前
忘忧完成签到,获得积分10
6秒前
你好发布了新的文献求助10
11秒前
BZ发布了新的文献求助30
11秒前
jenningseastera应助明若清采纳,获得30
11秒前
豪士赋完成签到,获得积分10
12秒前
asukahart595完成签到,获得积分20
15秒前
愤怒的茉莉完成签到,获得积分10
15秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
hmf1995完成签到 ,获得积分10
21秒前
Berthe完成签到 ,获得积分10
22秒前
23秒前
asukahart595发布了新的文献求助10
27秒前
29秒前
科研通AI5应助Nostalgia采纳,获得10
30秒前
31秒前
32秒前
zjky6r完成签到,获得积分10
32秒前
彭于晏应助文竹采纳,获得10
33秒前
zjky6r发布了新的文献求助10
35秒前
田様应助xiexie采纳,获得10
37秒前
香蕉奇迹发布了新的文献求助10
39秒前
外向超短裙完成签到,获得积分10
40秒前
BZ完成签到,获得积分10
41秒前
41秒前
SCI完成签到,获得积分10
41秒前
ssk完成签到,获得积分10
43秒前
SciGPT应助科研通管家采纳,获得10
43秒前
无花果应助科研通管家采纳,获得10
43秒前
脑洞疼应助科研通管家采纳,获得10
43秒前
CodeCraft应助科研通管家采纳,获得10
43秒前
22222应助科研通管家采纳,获得30
43秒前
SYLH应助科研通管家采纳,获得10
44秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867754
求助须知:如何正确求助?哪些是违规求助? 3410030
关于积分的说明 10666341
捐赠科研通 3134298
什么是DOI,文献DOI怎么找? 1728967
邀请新用户注册赠送积分活动 833103
科研通“疑难数据库(出版商)”最低求助积分说明 780610