Potential of near infrared spectroscopy and pattern recognition for rapid discrimination and quantification of Gleditsia sinensis thorn powder with adulterants

模式识别(心理学) 规范化(社会学) 人工智能 化学 平滑的 支持向量机 偏最小二乘回归 相关系数 二阶导数 数学 生物系统 统计 计算机科学 数学分析 社会学 人类学 生物
作者
Lijun Wang,Hui Yin,Kun Jiang,Guo Yin,Jue Wang,Yan Yan,Li Wang,Jing Li,Ping Wang,BI Kai-shun,Tiejie Wang
出处
期刊:Journal of Pharmaceutical and Biomedical Analysis [Elsevier]
卷期号:160: 64-72 被引量:23
标识
DOI:10.1016/j.jpba.2018.07.036
摘要

The Gleditsia sinensis Lam thorn (GST) is a classical traditional Chinese medical herb, which is of high medical and economic value. GST could be easily adulterated with branch of Rosa multiflora thunb (BRM) and Rosa rugosa thumb (BRR), because of their similar appearances and much lower cost for these adulterants. In this study Fourier transform near-infrared spectroscopy (FT-NIR) combined with chemical pattern recognition techniques was explored for the first time to discriminate and quantify of cheaper materials (BRM and BRR) in GST. The Savitzkye-Golay (SG) smoothing, vector normalization (VN), min max normalization (MMN), first derivative (1 st D) and second derivative (2nd D) methods were used to pre-process the raw FT-NIR spectra. Successive projections algorithm was adopted to select the characteristic variables and linear discriminate analysis (LDA), support vector machine (SVM), as while as back propagation neural network (BPNN) algorithms were applied to construct the identification models. Results showed that BPNN models performance best compared with LDA and SVM models for it could reach 100% accuracy for identifying authentic GST, and GST adulterated with BRM and BRR based on the spectral region of 6500-5500 cm-1 combined with 1 st D pre-processing. In addition, the BRM and BRR content in adulterated GST were determined by partial least squares (PLS) regression. The correlation coefficient of prediction (rp), root mean square error of prediction (RMSEP) and bias for the prediction by PLS regression model were 0.9972, 1.969% and 0.3198 for BRM, 0.9972, 1.879% and 0.05408 for BRR, respectively. These results suggest that the combination of NIR spectroscopy and chemometric methods offers a simple, fast and reliable method for classification and quantification in the quality control of the tradition Chinese medicine herb of GST.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cherry完成签到,获得积分10
刚刚
阿萌毛毛完成签到,获得积分10
刚刚
外向梦山发布了新的文献求助10
刚刚
方班术发布了新的文献求助10
刚刚
eternity136发布了新的文献求助10
1秒前
yy发布了新的文献求助10
1秒前
1秒前
轩轩发布了新的文献求助10
1秒前
柳暗花明1302完成签到,获得积分10
1秒前
1秒前
2秒前
Giotto完成签到,获得积分10
3秒前
reeves完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
5秒前
在水一方应助绝世冰淇淋采纳,获得10
5秒前
脑洞疼应助多情大炮采纳,获得10
6秒前
orixero应助Foalphaz采纳,获得10
6秒前
桃花岛岛主完成签到 ,获得积分10
6秒前
6秒前
MoLing发布了新的文献求助10
6秒前
月光族完成签到,获得积分10
6秒前
善学以致用应助番茄采纳,获得10
6秒前
6秒前
zydd发布了新的文献求助10
6秒前
6秒前
HITvagary完成签到,获得积分10
7秒前
肝不动的牛马完成签到,获得积分10
7秒前
粗暴的嫣娆完成签到,获得积分10
7秒前
7秒前
7秒前
羊肉泡馍完成签到,获得积分10
8秒前
开朗的仰完成签到,获得积分10
8秒前
9秒前
10秒前
煜琪完成签到,获得积分10
10秒前
沉默的葵阴完成签到,获得积分10
11秒前
fu发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579766
关于积分的说明 14370418
捐赠科研通 4507955
什么是DOI,文献DOI怎么找? 2470343
邀请新用户注册赠送积分活动 1457229
关于科研通互助平台的介绍 1431172