Detection of Power Line Insulator Defects Using Aerial Images Analyzed With Convolutional Neural Networks

卷积神经网络 绝缘体(电) 航空影像 计算机科学 计算机视觉 分割 电力传输 目标检测 稳健性(进化) 深度学习 人工智能 模式识别(心理学) 工程类 图像(数学) 电气工程 基因 化学 生物化学
作者
Xian Tao,Dapeng Zhang,Zihao Wang,Xilong Liu,Hongyan Zhang,De Xu
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:50 (4): 1486-1498 被引量:579
标识
DOI:10.1109/tsmc.2018.2871750
摘要

As the failure of power line insulators leads to the failure of power transmission systems, an insulator inspection system based on an aerial platform is widely used. Insulator defect detection is performed against complex backgrounds in aerial images, presenting an interesting but challenging problem. Traditional methods, based on handcrafted features or shallow learning techniques, can only localize insulators and detect faults under specific detection conditions, such as when sufficient prior knowledge is available, with low background interference, at certain object scales, or under specific illumination conditions. This paper discusses the automatic detection of insulator defects using aerial images, accurately localizing insulator defects appearing in input images captured from real inspection environments. We propose a novel deep convolutional neural network (CNN) cascading architecture for performing localization and detecting defects in insulators. The cascading network uses a CNN based on a region proposal network to transform defect inspection into a two-level object detection problem. To address the scarcity of defect images in a real inspection environment, a data augmentation method is also proposed that includes four operations: 1) affine transformation; 2) insulator segmentation and background fusion; 3) Gaussian blur; and 4) brightness transformation. Defect detection precision and recall of the proposed method are 0.91 and 0.96 using a standard insulator dataset, and insulator defects under various conditions can be successfully detected. Experimental results demonstrate that this method meets the robustness and accuracy requirements for insulator defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wen完成签到,获得积分10
刚刚
学习使人头大完成签到,获得积分10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
墨风发布了新的文献求助10
1秒前
大方大船发布了新的文献求助20
1秒前
追寻紫安发布了新的文献求助10
1秒前
aptx4869关注了科研通微信公众号
2秒前
皮老八完成签到,获得积分10
2秒前
帅哥完成签到,获得积分10
2秒前
2秒前
瞧6667完成签到,获得积分20
2秒前
3秒前
研友_38KvPZ发布了新的文献求助10
3秒前
宝海青完成签到,获得积分10
3秒前
sylia关注了科研通微信公众号
4秒前
4秒前
4秒前
尘曦完成签到,获得积分20
4秒前
safeandsound发布了新的文献求助10
5秒前
5秒前
帅哥发布了新的文献求助10
5秒前
6秒前
D调的华丽发布了新的文献求助10
6秒前
gan完成签到,获得积分10
6秒前
思源应助噜噜采纳,获得10
6秒前
7秒前
mimi12138完成签到,获得积分10
7秒前
123456发布了新的文献求助10
7秒前
Dreamjessi完成签到,获得积分10
7秒前
7秒前
hang完成签到,获得积分10
8秒前
大何发布了新的文献求助10
8秒前
诶诶完成签到,获得积分10
8秒前
杨小谦完成签到,获得积分10
8秒前
8秒前
Lee完成签到,获得积分10
8秒前
大个应助Angora采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Physical Properties of Hardened Conventional Concrete in Dams / Propriétes Physiques du Béton Conventionnel Durci des Barrages 1888
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5025056
求助须知:如何正确求助?哪些是违规求助? 4262012
关于积分的说明 13284176
捐赠科研通 4069358
什么是DOI,文献DOI怎么找? 2225668
邀请新用户注册赠送积分活动 1234301
关于科研通互助平台的介绍 1158354