强化学习
方案(数学)
计算机科学
常微分方程
点(几何)
差动钢筋
数学优化
钢筋
数学
应用数学
人工智能
微分方程
数学分析
几何学
心理学
社会心理学
作者
Konstantin Avrachenkov,Vivek S. Borkar,Harsh P Dolhare,Kishor Patil
出处
期刊:Emergence, complexity and computation
日期:2021-01-01
卷期号:: 192-220
被引量:1
标识
DOI:10.1007/978-3-030-76928-4_10
摘要
We analyze the DQN reinforcement learning algorithm as a stochastic approximation scheme using the o.d.e. (for ‘ordinary differential equation’) approach and point out certain theoretical issues. We then propose a modified scheme called Full Gradient DQN (FG-DQN, for short) that has a sound theoretical basis and compare it with the original scheme on sample problems. We observe a better performance for FG-DQN.
科研通智能强力驱动
Strongly Powered by AbleSci AI