Risk factors and prognostic nomogram for patients with second primary cancers after lung cancer using classical statistics and machine learning

列线图 医学 比例危险模型 肿瘤科 肺癌 内科学 机器学习 人工智能 计算机科学
作者
Lianxiang Luo,Hao-Wen Lin,Jiahui Huang,Baixin Lin,Fangfang Huang,Hui Luo
出处
期刊:Clinical and Experimental Medicine [Springer Nature]
卷期号:23 (5): 1609-1620 被引量:4
标识
DOI:10.1007/s10238-022-00858-5
摘要

Previous studies have revealed an increased risk of secondary primary cancers (SPC) after lung cancer. The prognostic prediction models for SPC patients after lung cancer are particularly needed to guide screening. Therefore, we study retrospectively analyzed the Surveillance, Epidemiology, and End Results (SEER) database using classical statistics and machine learning to explore the risk factors and construct a novel overall survival (OS) prediction nomogram for patients with SPC after lung cancer. Data of patients with SPC after lung cancer, covering 2000 to 2016, were gathered from the SEER database. The incidence of SPC after lung cancer was calculated by Standardized incidence ratios (SIRs). Cox proportional hazards regression, machine learning (ML), Kaplan–Meier (KM) methods, and log-rank tests were conducted to identify the important prognostic factors for predicting OS. These significant prognostic factors were used for the development of an OS prediction nomogram. Totally, 10,487 SPC samples were randomly divided into training and validation cohorts (model construction and internal validation) from the SEER database. In the random forest (RF) and extreme gradient boosting (XGBoost) feature importance ranking models, age was the most important variable which was also reflected in the nomogram. And, the models that combined machine learning with cox proportional hazards had a better predictive performance than the model that only used cox proportional hazards (AUC = 0.762 in RF, AUC = 0.737 in XGBoost, AUC = 0.722 in COX). Calibration curves and decision curve analysis (DCA) curves also revealed that our nomogram has excellent clinical utility. The web-based dynamic nomogram calculator was accessible on https://httseer.shinyapps.io/DynNomapp/ . The prognosis characteristics of SPC following lung cancer were systematically reviewed. The dynamic nomogram we constructed can provide survival predictions to assist clinicians in making individualized decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助沅沅选手采纳,获得10
刚刚
Zac发布了新的文献求助10
1秒前
zzz发布了新的文献求助10
1秒前
1秒前
2秒前
YVO4完成签到 ,获得积分10
2秒前
2秒前
小马能发sci完成签到,获得积分10
3秒前
刻苦的溪流完成签到,获得积分10
3秒前
3秒前
南风关注了科研通微信公众号
3秒前
黄礼韬发布了新的文献求助10
4秒前
ken完成签到,获得积分10
4秒前
4秒前
ajun发布了新的文献求助20
5秒前
5秒前
5秒前
阿婧完成签到 ,获得积分10
5秒前
可爱的函函应助时一采纳,获得10
6秒前
6秒前
Sichen孟完成签到,获得积分10
6秒前
隐形曼青应助mayamaya采纳,获得10
7秒前
黄橙子完成签到 ,获得积分10
7秒前
ken发布了新的文献求助10
9秒前
9秒前
玉玊发布了新的文献求助10
9秒前
Rinamamiya完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
CGCG发布了新的文献求助10
12秒前
田様应助二十八画生采纳,获得10
12秒前
jack完成签到,获得积分10
13秒前
paradise发布了新的文献求助10
13秒前
13秒前
wpz完成签到,获得积分10
14秒前
14秒前
傻傻的夜柳完成签到 ,获得积分10
15秒前
嘻嘻发布了新的文献求助10
16秒前
沅沅选手完成签到,获得积分10
16秒前
简单的月饼完成签到,获得积分10
16秒前
天天快乐应助ldy采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484198
求助须知:如何正确求助?哪些是违规求助? 4584516
关于积分的说明 14398451
捐赠科研通 4514616
什么是DOI,文献DOI怎么找? 2474059
邀请新用户注册赠送积分活动 1459987
关于科研通互助平台的介绍 1433390