Analytical Modeling of Flowrate and Its Maxima in Electrochemical Bioelectronics with Drug Delivery Capabilities

生物电子学 微流控 药物输送 流体学 体积流量 过程(计算) 纳米技术 过程变量 材料科学 流量(数学) 计算机科学 生物系统 生物医学工程 机械 工程类 生物传感器 物理 电气工程 操作系统 生物
作者
Raudel Avila,Yixin Wu,Rinaldo Garziera,John A. Rogers,Yonggang Huang
出处
期刊:Research [American Association for the Advancement of Science]
卷期号:2022 被引量:7
标识
DOI:10.34133/2022/9805932
摘要

Flowrate control in flexible bioelectronics with targeted drug delivery capabilities is essential to ensure timely and safe delivery. For neuroscience and pharmacogenetics studies in small animals, these flexible bioelectronic systems can be tailored to deliver small drug volumes on a controlled fashion without damaging surrounding tissues from stresses induced by excessively high flowrates. The drug delivery process is realized by an electrochemical reaction that pressurizes the internal bioelectronic chambers to deform a flexible polymer membrane that pumps the drug through a network of microchannels implanted in the small animal. The flowrate temporal profile and global maximum are governed and can be modeled by the ideal gas law. Here, we obtain an analytical solution that groups the relevant mechanical, fluidic, environmental, and electrochemical terms involved in the drug delivery process into a set of three nondimensional parameters. The unique combinations of these three nondimensional parameters (related to the initial pressure, initial gas volume, and microfluidic resistance) can be used to model the flowrate and scale up the flexible bioelectronic design for experiments in medium and large animal models. The analytical solution is divided into (1) a fast variable that controls the maximum flowrate and (2) a slow variable that models the temporal profile. Together, the two variables detail the complete drug delivery process and control using the three nondimensional parameters. Comparison of the analytical model with alternative numerical models shows excellent agreement and validates the analytic modeling approach. These findings serve as a theoretical framework to design and optimize future flexible bioelectronic systems used in biomedical research, or related medical fields, and analytically control the flowrate and its global maximum for successful drug delivery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
slx发布了新的文献求助10
2秒前
111完成签到,获得积分10
3秒前
温乘云完成签到,获得积分10
3秒前
4秒前
5秒前
yu_z完成签到 ,获得积分10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
tuanheqi应助科研通管家采纳,获得150
5秒前
赫若魔应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
6秒前
zcl应助科研通管家采纳,获得150
6秒前
6秒前
Zx_1993应助科研通管家采纳,获得10
6秒前
6秒前
无花果应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
董春伟应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
俊逸飞雪完成签到,获得积分10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
白雪雪发布了新的文献求助10
6秒前
生动梦松应助科研通管家采纳,获得150
7秒前
深情安青应助科研通管家采纳,获得30
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
James应助科研通管家采纳,获得20
7秒前
7秒前
tuanheqi应助科研通管家采纳,获得150
7秒前
7秒前
zhangyue7777完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
translating meaning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4919305
求助须知:如何正确求助?哪些是违规求助? 4191351
关于积分的说明 13017052
捐赠科研通 3961629
什么是DOI,文献DOI怎么找? 2171783
邀请新用户注册赠送积分活动 1189709
关于科研通互助平台的介绍 1098342