A Review of the Mechanical Properties and Enhancement Mechanisms of Nanomodified Structural Adhesives in Engineering Joints

材料科学 耐久性 纳米技术 纳米材料 胶粘剂 托换 结构材料 表面改性 表面工程 标准化 领域(数学) 损伤容限 机械工程 复合材料 材料性能 材料设计 设计要素和原则 计算机科学 软质材料
作者
Songbo Wang,Zhuo Duan,Chao Yang
出处
期刊:Polymer Composites [Wiley]
标识
DOI:10.1002/pc.70800
摘要

ABSTRACT Adhesively bonded joints (ABJs) enable the joining of dissimilar materials, reduce structural weight, and promote uniform stress transfer, supporting their widespread use in construction, aerospace, electronic packaging, and wood processing. However, conventional adhesives often lack sufficient mechanical performance, durability, and functional properties to meet the multi‐performance demands of complex service conditions. Nanomaterials, which possess high surface area, tunable surface chemistry, and intrinsic mechanical strength, pro a promising route to enhance adhesive performance. Publication data from the Web of Science Core Collection show that research on nanomodified ABJs has grown from 104 papers in 2011 to 213 in 2025, indicating sustained interest in this field over the past 15 years. Nevertheless, existing reviews largely focus on performance improvements and provide limited integration of nanomaterial characteristics, interfacial modification mechanisms, and multiscale structure–performance relationships. They also seldom evaluate the suitability and limitations of nanomodification from an application‐driven perspective. This review addresses these gaps by systematically summarizing how nanomaterials enhance ABJ performance, with emphasis on how morphology, surface chemistry, and dispersion influence mechanical, thermal, and electrical properties. Cross‐scale mechanisms underpinning performance gain are discussed through representative experiments and modeling approaches. The review then compares the engineering relevance of different nanomaterial systems based on key performance requirements in construction, aerospace, electronics, and plywood. Finally, it identifies persistent challenges, including long‐term durability and standardization issues, and outlines future research directions. This review can provide guidance for material design, performance prediction, and application‐specific development of nanomodified ABJs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小麻豆完成签到,获得积分10
刚刚
整齐夏彤完成签到,获得积分10
刚刚
kyoko886发布了新的文献求助10
刚刚
1秒前
在水一方应助fl19901010采纳,获得20
1秒前
1秒前
2秒前
典雅的俊驰完成签到,获得积分10
2秒前
爱听歌盼海完成签到 ,获得积分10
3秒前
edward发布了新的文献求助10
3秒前
654-2发布了新的文献求助10
3秒前
baby完成签到,获得积分10
4秒前
顾矜应助微不足道采纳,获得10
4秒前
fan完成签到,获得积分10
4秒前
漂亮雨柏完成签到,获得积分10
4秒前
大力的乐曲完成签到,获得积分10
5秒前
YOYO发布了新的文献求助50
5秒前
5秒前
5秒前
curry应助星空采纳,获得10
6秒前
6秒前
AAA专业疏通下水道完成签到,获得积分10
6秒前
爸爸发布了新的文献求助10
7秒前
糊涂的河马完成签到,获得积分10
8秒前
xuxingjie完成签到,获得积分10
8秒前
小张真的困啦完成签到,获得积分10
8秒前
酷酷的冰淇淋完成签到 ,获得积分10
9秒前
9秒前
斯文败类应助无情墨镜采纳,获得10
9秒前
10秒前
干净寻冬完成签到,获得积分0
10秒前
慕青应助小福采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
momokop发布了新的文献求助10
12秒前
斯文钢笔发布了新的文献求助10
12秒前
ZLX发布了新的文献求助10
12秒前
古德完成签到,获得积分10
12秒前
Jasper应助Merge采纳,获得10
13秒前
是希希啊a完成签到,获得积分10
13秒前
科研通AI2S应助维克托采纳,获得30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767756
求助须知:如何正确求助?哪些是违规求助? 5572426
关于积分的说明 15416433
捐赠科研通 4901734
什么是DOI,文献DOI怎么找? 2637343
邀请新用户注册赠送积分活动 1585344
关于科研通互助平台的介绍 1540528