Electrochemiluminescence Resonance Energy Transfer Biosensor Based on Self-Enhanced Terbium-Based Metal–Organic Frameworks with Antenna Effect for Sensitive MicroRNA-155 Detection

作者
Ruiyan Liu,Zhuoxin Ye,Yongli Wu,Yan Zhang,Mo Ma,Pinyi Ma,Daqian Song
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:97 (44): 24706-24714
标识
DOI:10.1021/acs.analchem.5c04977
摘要

The efficiency of electrochemiluminescence (ECL) emission relies heavily on the spatial proximity between luminophores and coreactant promoters. In conventional ternary systems, the diffusion-driven separation of components in solution often leads to energy loss and lower ECL efficiency. In this work, a self-enhanced lanthanide metal-organic framework (Ln-MOF) emitter, CuTb-BTC@AgNPs (CTBA), was constructed using Tb3+ as the luminophore, Cu2+ as the coreactant promoter, and Ag nanoparticles (AgNPs) as the electrical conductivity enhancer. An appropriate colocalization of these components significantly shortened the electron transfer distance between the luminescent group and the coreactant promoter, thereby enhancing the ECL efficiency. To modulate the signal, a Pd@Cu2O quencher, which has a broad UV-Vis absorption range, was introduced for resonance energy transfer (RET)-based suppression. A dual-output toehold-mediated strand displacement (TMSD) strategy was employed to enable target recycling and "on-off" signal control. Using microRNA-155 (miR-155), a biomarker implicated in multiple cancers, as a model target, the biosensor exhibited a wide linear detection range from 10 aM to 1 nM and an ultralow detection limit of 4.7 aM. It also had excellent specificity and achieved high recovery rates when applied to detect human serum and cancer cell samples. Overall, this work describes a robust strategy for integrating Ln-MOF emission platforms with nucleic acid amplification, presenting a powerful tool for the ultrasensitive detection of clinically relevant miRNA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动的鹰发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
ephemeral完成签到,获得积分10
刚刚
1秒前
1秒前
hanhan发布了新的文献求助10
1秒前
Snow发布了新的文献求助20
1秒前
染墨完成签到,获得积分10
1秒前
2秒前
Hello应助会撒娇的靖仇采纳,获得10
2秒前
科研通AI6应助hode采纳,获得10
2秒前
功能界面完成签到,获得积分20
2秒前
漫天飞雪_寒江孤影完成签到 ,获得积分10
3秒前
3秒前
大大关注了科研通微信公众号
4秒前
4秒前
牧辰完成签到,获得积分10
4秒前
Forestzoo发布了新的文献求助10
5秒前
peashooter完成签到,获得积分10
5秒前
6秒前
852应助hanshuwen采纳,获得10
6秒前
丘比特应助MaoTing采纳,获得10
6秒前
传奇3应助hrdcrhf采纳,获得10
7秒前
cc发布了新的文献求助10
7秒前
南北发布了新的文献求助10
7秒前
oreado发布了新的文献求助10
7秒前
小蒋完成签到,获得积分10
7秒前
科研通AI6应助沉静朋友采纳,获得10
7秒前
kk发布了新的文献求助10
8秒前
牧辰发布了新的文献求助10
8秒前
星辰大海应助momo采纳,获得10
8秒前
传奇3应助lmg采纳,获得10
8秒前
8秒前
dddd发布了新的文献求助20
8秒前
小蘑菇应助鲸鱼采纳,获得10
9秒前
开放初瑶发布了新的文献求助10
9秒前
9秒前
窝是喵星人完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668193
求助须知:如何正确求助?哪些是违规求助? 4890085
关于积分的说明 15123716
捐赠科研通 4827144
什么是DOI,文献DOI怎么找? 2584504
邀请新用户注册赠送积分活动 1538380
关于科研通互助平台的介绍 1496656