Effects of fermentation by Lactobacillus Plantarum NCU116 on the antihypertensive potential of black sesame seed (BSS) and structure characteristics of fermented black sesame seed protein (FBSSP) were investigated. Angiotensin-I-converting enzyme (ACE) inhibition and zinc chelating ability of fermented black sesame seed hydrolysate (FBSSH) reached the highest of 60.78 ± 3.67 % and 2.93 ± 0.04 mg/mL at 48 h and 60 h of fermentation, respectively. Additionally, the antioxidant activities of FBSSH and surface hydrophobicity of FBSSP were increased noticeably by fermentation. The α-helix and β-rotation of FBSSP tended to decrease and increase, respectively, during fermentation. Correlation analysis indicated strong positive relationships between β-turn and ACE inhibition activity as well as zinc chelating ability with correlation coefficients r of 0.8976 and 0.8932. Importantly, novel ACE inhibitory peptides LLLPYY (IC50 = 12.20 μM) and ALIPSF (IC50 = 558.99 μM) were screened from FBSSH at 48 h using in silico method. Both peptides showed high antioxidant activities in vitro. Molecular docking analysis demonstrated that the hydrogen bond connected with zinc ions of ACE mainly attributed to the potent ACE inhibitory activity of LLLPYY. The findings indicated that fermentation by Lactobacillus Plantarum NCU116 is an effective method to enhance the antihypertensive potential of BSS.